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Abstract

Class imbalance is a frequently occurring scenario in classification tasks. Learning
from imbalanced data poses quite a challenge which has instigated a lot of research in
this area. Various techniques have been developed over the years to tackle this prob-
lem. These approaches are broadly classified into two categories: Data-level modifi-
cation and Algorithm-level modification. In data-level modification, the original class
distribution in the data is altered through resampling techniques. In algorithm-level
modification, the traditional classification algorithms are adjusted to the imbalanced
scenarios by changing the cost function and making them cost-sensitive (CS).

A lot of different data resampling and CS techniques have been proposed by re-
searchers in the past decade. To understand their strengths and weaknesses, a com-
prehensive experimental analysis is first conducted to obtain insights about these tech-
niques. Several limitations have been identified that limit the performance of these ap-
proaches. Most of these techniques do not take into consideration data intrinsic charac-
teristics that complicate the learning process. Several data difficulty factors have been
identified in some previous studies which are rarely addressed in most cases. More-
over, the application of many of these techniques overfits the data and causes a loss
of generalization, producing poor performance while testing. They are also unable to
provide well-generalized performance on a wide range of imbalanced scenarios.

In this study, novel strategies have been developed to address these issues. So-
lutions have been proposed to limit the effects of different data difficulty factors and
enhance prediction performance. Moreover, attempts have been made to overcome
the shortcomings of the established approaches and obtain better generalization. Three
different methods have been proposed in this study. First, a novel data resampling tech-
nique that takes into consideration data intrinsic characteristics to effectively balance
the dataset. Second, an instance complexity-based CS technique which is an advanced
modification to the original CS approach. Third, a hybrid framework combining re-
sampling and CSL.

Rigorous experiments have been conducted on a wide range of imbalanced datasets
to validate the performance of the proposed approaches. The results have been evalu-
ated on eight different performance measures and compared with other state-of-the-art
techniques used in imbalanced learning. Superior results have been obtained from the
proposed techniques on different imbalanced scenarios. The results demonstrate the
efficacy of the proposed models in learning from imbalanced data.

xvi



To conclude, this research delineates new trajectories in the field of the imbalanced
domain. New approaches have been proposed that introduce fresh perspectives and
directions in imbalanced learning. The proposed strategies are remarkably successful,
ensuring well-generalized performance when addressing imbalanced data.

Keywords: Class imbalance, Class overlap, Cost-sensitive learning, Data difficulty
factors, Empirical study, Multiclass classification, SMOTE.
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Chapter 1

Introduction

1.1 Overview

Learning from imbalanced data is a major challenge in classification tasks. Real-world
datasets often come with different degrees of imbalance. One class is usually underrep-
resented (minority class) compared to the other class (majority class). In applications
such as medical diagnosis, fault detection, and fraud identification, class imbalance
is quite prevalent. Traditional classification algorithms are not suitable to deal with
such scenarios. Standard classifiers are designed in such a way that they are trained to
minimize the number of misclassifications, irrespective of the class. Therefore, if one
class is underrepresented in the data, the performance gets biased towards the majority
class. The problem intensifies if the disparity between the classes is larger. There are
other data intrinsic characteristics that further complicate the scenario. The classifier
might completely overlook the minority class samples and classify all test samples as
the majority class. However, identifying the minority class samples correctly is of-
ten imperative. In the healthcare context, misdiagnosing a cancer patient as normal
can have severe consequences. Therefore, it is essential to take necessary measures
to tackle the class imbalance in order to achieve satisfactory performance. This has
attracted a lot of attention from researchers over the years, and a variety of techniques
have been proposed to tackle the problem [1].

The techniques used in imbalanced learning tasks can be broadly classified into
two categories:

• Data level approach

• Algorithmic level approach

The data level approach refers to resampling techniques where the original class
distribution in the data is modified [2]. This is done through oversampling (OS) or un-
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dersampling (US). In OS, new minority-class samples are generated to increase their
presence. This is achieved by duplicating the existing samples or synthesizing new
samples through some heuristics. On the other hand, in US, instances from the ma-
jority class are removed. This can be done randomly or heuristically. The goal is
usually to balance the dataset. Recent investigations suggest it is even more important
to reduce the class overlapping in the process [3]. Class overlap refers to the phe-
nomenon where data points from different classes are not distinctly separable in the
feature space, causing them to intermingle. This overlap can lead to misclassification
and reduce the accuracy of classification algorithms, as the boundaries between classes
are blurred [4].

In algorithmic-level approaches, the original classification algorithm is modified
to adapt to the imbalanced domain scenario. This is achieved by changing the cost
function to handle the class imbalance directly [5]. Higher misclassification costs are
assigned to the minority class instances to make the algorithm more sensitive to those
errors. During training, the model learns by trying to reduce the overall misclassifi-
cation cost. Assigning higher weight to the minority-class misclassifications shifts the
bias from the majority class. This way, the algorithm is made cost-sensitive (CS). This
approach is classifier dependent as different algorithms use different learning proce-
dures.

These two categories of techniques adopt two different approaches to deal with the
imbalanced scenario. Both of these have been very successful in addressing the class
imbalance problem and are widely used in many applications [6–8].

1.2 Problem Statement

While a plethora of approaches have been developed for imbalanced classification
tasks, a very limited amount of research has been conducted to identify the issues
that make imbalanced classification so difficult. Only a limited number of studies have
analyzed the efficacy of the established techniques on a wide variety of imbalanced
datasets. This has created a research gap in this domain and this study aims to fill that
void.

Class imbalance in the data is typically held responsible for the decline in perfor-
mance observed in standard classifiers. Consequently, conventional resampling meth-
ods aim to rectify this issue by equalizing the class distribution to alleviate the problem.
However, recent studies, including our own investigations, have revealed that class im-
balance is not the primary factor contributing to this issue [9]. There are other data
intrinsic characteristics that exert a greater influence on the challenges encountered in
learning from imbalanced data. These include –
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• Class overlapping

• Presence of noisy samples

• The rarity of the samples

• Small disjuncts

These factors need to be addressed to improve the prediction performance. How-
ever, the traditional resampling techniques as well as CS approaches do not take these
issues into consideration. Consequently, they suffer from a severe drop in performance
in different imbalanced scenarios. For instance, many of the popular approaches do not
perform well in highly imbalanced datasets due to the limitations of their design. These
established approaches also introduce other issues while modifying the algorithm or
the dataset (observed during experimentation in this study). These are summarized as
follows –

• OS techniques introduce noisy samples in the data while generating synthetic
minority class samples. These noisy instances do not represent the actual minor-
ity class and cause overfitting.

• OS techniques also increase overlapping with the opposite class, resulting in a
loss of generalizability.

• US techniques can cause loss of valuable information if too many samples are
removed.

• US techniques do not increase the presence of minority class samples in the
dataspace which is crucial for accurate identification of the positive cases.

• Many of these techniques only work well on low imbalances but fail in highly
imbalanced datasets.

• CS approaches penalize all the minority class samples equally. However, not
all the samples offer the same level of learning difficulty. Indiscriminately pe-
nalizing all the samples can create some unusual deformation of the decision
boundary and consequently, cause a higher number of misclassifications of the
majority class instances.

The traditional approaches used in the imbalanced domain do not adequately take
into account all the different data difficulty factors that are responsible for the intrica-
cies encountered in imbalanced learning. Additionally, these methods tend to introduce
additional complexities that lead to overfitting and a decrease in generalization. It is
crucial to consider all these aspects when devising new approaches, and this research
aims to explore these considerations thoroughly.
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1.3 Objectives

The aim of this research is to develop new and effective strategies for imbalanced
learning. In that regard, an extensive experimental study and literature review are first
conducted to identify the major issues and find the shortcomings of the established ap-
proaches. The algorithms developed in this study address all the data difficulty factors
while also alleviating the issues associated with popular methods. In summary, this
research has the following objectives –

• To thoroughly investigate the performance of established methods used in im-
balanced learning on a wide range of imbalanced scenarios to identify their
strengths and weaknesses.

• To thoroughly review the literature on imbalanced learning, especially those that
raise concerns regarding typical approaches and their limitations.

• To devise novel strategies capable of mitigating the challenges posed by data
complexity, thus enabling the attainment of satisfactory performance.

• To develop new methodologies capable of surpassing the constraints of existing
approaches, thereby delivering enhanced performance.

• To develop novel approaches that can provide well-generalized performance on
a wide range of imbalanced datasets.

1.4 Contributions

The main contributions of this research are as follows.

• A detailed experimental study has been carried out on a wide range of imbal-
anced datasets to observe the performance of popular and state-of-the-art tech-
niques used in imbalanced learning. A critical discussion on these approaches
has been provided. Through an in-depth analysis, several major limitations of the
established approaches have been identified. The efficacy of these approaches
on a range of imbalanced scenarios has been discovered. The primary factors
contributing to the challenges of learning from imbalanced data have been de-
termined. How different sampling techniques deal with these factors have been
singled out. Overall, through this empirical study, a comprehensive analysis of
the established approaches in the imbalanced domain has been provided. This

work has been published at the 2024 International Conference on Electrical En-

gineering and Information & Communication Technology (ICEEICT), Dhaka,

Bangladesh [10].

4



• A novel data resampling methodology has been proposed. This approach is
aimed at minimizing the effect of the data difficulty factors while also addressing
the limitations of the popular approaches. This work is currently under review in

the Knowledge and Information Systems journal.

• Based on the developed resampling methodology, a novel ensemble algorithm
has been proposed. This ensemble approach is a modified and improved ver-
sion of the original Balanced Random Forest (BRF) classifier. This work has

been published at the 2024 35th Conference of Open Innovations Association

(FRUCT), Finland [11].

• A novel instance complexity-based CS framework has been proposed. While tra-
ditional CS approaches penalize all the minority-class instances equally, in the
proposed approach, instances are weighted according to their difficulty level.
This provides a more plausible weighting mechanism with enhanced perfor-
mance. A paper on this work is currently under review at the IEEE International

Conference on Data Mining (ICDM).

• Hybridization between data resampling and Cost-sensitive learning (CSL) can be
quite effective in handling class imbalances. This approach has been applied to a
real-world problem of predicting complications of myocardial infarction within
several hours of hospitalization. Improved prediction performance has been ob-
served compared to other popular approaches. The work has been published in

Informatics in Medicine Unlocked journal [12].

• A novel multilevel decomposition strategy has been proposed for multiclass clas-
sification. The proposed approach provides improved performance over tra-
ditional One-vs-One (OVO) or One-vs-All (OVA) decomposition techniques.
Here, instead of unsystematically binarizing the dataset to handle multiclass sce-
narios, a sophisticated decomposition methodology has been adopted. A paper

on this work is currently being prepared.

1.5 Thesis Outline

The remainder of the article is organized as follows.

• Chapter 2 provides a detailed discussion of the imbalanced learning problem.
The methodologies used in learning from imbalanced data have been reviewed.
A thorough discussion on evaluation metrics for imbalanced data has been pre-
sented. Findings from some recent investigations on imbalanced learning have
also been discussed.
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• In Chapter 3, a comprehensive analysis of the well-established methods in the
imbalanced domain has been presented. The strengths and weaknesses of the
methods have been discussed. The complexities the classification algorithms
face when dealing with skewed class distribution have also been described here.

• Chapter 4 introduces a novel data resampling methodology that simultaneously
focuses on reducing class overlapping and class imbalance for improved perfor-
mance.

• Chapter 5 presents a novel instance-level CS framework that weights instances
according to their complexity.

• Chapter 6 details a new hybrid framework between data resampling using the
SMOTE algorithm and CSL.

• Chapter 7 concludes this article with a summary of the thesis, its limitations, and
future research prospects.
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Chapter 2

Research Background

This chapter presents a detailed introduction to the imbalanced classification problem.
The methodologies used in the imbalanced domain are categorically presented and
discussed. A critical analysis of the appropriate metrics for performance evaluation
has been provided. Some of the recent works in this domain from other researchers
have also been reviewed.

2.1 Foundations of Imbalanced Learning

Imbalanced data refers to a dataset in which the classes are not represented equally [2].
In other words, one class (or a few classes) has significantly more instances than the
other(s). This imbalance can lead to biased models that perform well on the major-
ity class but poorly on the minority class(es). Imbalanced data is common in many
real-world applications, such as fraud detection, medical diagnosis, and rare event pre-
diction.

Class imbalance poses quite a challenge in predictive modeling. As the perfor-
mance gets biased towards one class (majority class), the classifier fails to correctly
identify instances from the other class(es), which are usually rare cases. However, it
is often more desirable to identify these rare instances correctly as they typically rep-
resent positive cases. Misidentifying these important examples or providing biased
predictions is not acceptable for a reliable prediction framework. For instance, in a
fraud detection task, the data usually contains hundreds of thousands of normal trans-
actions compared to only a few hundred fraudulent transactions. Now, the goal of the
prediction framework is to capture these fraudulent transactions and warn the system.
However, a traditional classifier trained on such skewed data usually becomes biased
and predicts almost all the transactions as normal, failing to identify the fraudulent
cases. The classifier fails to serve its actual purpose. This is unacceptable and appro-
priate measures need to be adopted to reduce the bias.

The class imbalance scenario has been illustrated in Fig. 2.1. As can be seen from
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Figure 2.1: Class imbalance in data.

the figure, the majority of the instances belong to class 0 while only a few instances
are from class 1. This skewness in the data biases the learners as the minority class be-
comes overshadowed by the presence of a large number of instances from the opposite
class. Many of the minority-class instances are seen as noisy samples by the classifier
and ignored. Consequently, the classifier is unable to accurately differentiate between
instances of the two classes, resulting in misclassification and a decline in overall per-
formance.

2.2 Strategies for Imbalanced Learning

Many different strategies have been developed to address the issue of class imbalance
[13]. Since traditional classifiers do not perform well on imbalanced data, the idea is to
either modify the dataset or adjust the algorithm to handle this issue effectively. These
techniques are broadly classified into two categories. Data-level and algorithmic-level.
They are discussed in detail below.

2.2.1 Data Level Modification

Data-level modification refers to changing the original number of instances in the
classes. This is done by generating new minority-class instances or eliminating in-
stances from the majority class. This is commonly referred to as ’sampling’ and has
become a standard data preprocessing technique in the case of imbalanced data. Re-
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searchers have proposed many different sampling techniques, which can be broadly
classified into four groups. They are -

• Oversampling (OS)

• Undersampling (US)

• Hybrid Sampling

• Ensemble

Oversampling refers to generating new minority class samples using the existing
ones. Undersampling refers to eliminating samples from the majority class. These can
be done heuristically or non-heuristically. While non-heuristic approaches are simple
and fast, they can cause overfitting or loss of information. Heuristic approaches, on the
other hand, are aimed at ensuring the quality of the resampled dataset by strategically
generating new minority class samples or carefully removing majority class samples
from the original data.

Oversampling (OS)

The idea behind OS is to generate new minority-class instances to increase their pres-
ence as well as to reduce the imbalance ratio (IR). This is illustrated in Fig. 2.2. Var-
ious OS techniques have been proposed over the years. The simplest one is Random
Oversampling (ROS) where samples are just duplicated to balance the dataset. This
is a non-heuristic approach and does not add any new information. A more advanced
heuristic approach is the Synthetic Minority Oversampling Technique (SMOTE) de-
veloped by Chawla et al. [14]. Here, new synthetic samples are generated using in-
terpolation. This is the most renowned sampling technique used in the imbalanced
domain.

The way SMOTE works is as follows. Given a minority class example, SMOTE
selects its nearest neighbors (typically using Euclidean distance). It then generates
synthetic examples by interpolating between the selected example and its neighbors.

Figure 2.2: Oversampling and Undersampling
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The synthetic examples lie along the line segments connecting the original example
and its neighbors in the feature space. By doing so, SMOTE creates new instances that
represent variations within the minority class. Due to its simplicity and robustness,
SMOTE has become a standard benchmark for learning from imbalanced data. The
sample generation process of SMOTE is illustrated in Fig. 2.3.

The popularity of the approach has led to the development of numerous variations
of the technique [15]. SMOTE, however popular, has its limitations. These variants
attempt to address those issues and improve performance. For instance, ADASYN
which stands for Adaptive SMOTE, takes an adaptive approach [16]. It focuses on
minority instances that are difficult to classify correctly, rather than oversampling all
minority instances uniformly. ADASYN generates more synthetic samples for minor-
ity instances closer to the decision boundary, creating synthetic samples in challeng-
ing areas of the feature space. There are around a hundred variations of the original
SMOTE algorithm. An empirical study on 85 such variants was conducted by Kovacs
et al. [17]. The authors identified some of the best-performing OS techniques. They
also pointed out that there are no major variations in performance among these vari-
ants.

A summary of some of the most popular and recent OS techniques is provided
below.

• Borderline-SMOTE (BL-SMOTE): Extension of SMOTE focusing on border-
line samples as they are more likely to be misclassified [18]. Synthetic samples
are generated only near the decision boundary.

• Safe-Level-SMOTE: Extension of SMOTE that assigns a safety level to the
minority class samples based on its nearest neighbors [19]. New samples are
created only in the safe positions. It improves upon SMOTE by considering a
“safe level” for each minority instance. By synthesizing more instances around
larger safe levels, this approach achieves better accuracy than SMOTE.
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Figure 2.3: Synthetic sample generation using SMOTE

10



• DBSMOTE: Extension of SMOTE which utilizes the DBSCAN clustering al-
gorithm to improve minority class samples detection rate. It generates synthetic
instances along the shortest path from each positive instance to a pseudo-centroid
of a minority-class cluster [20]. As a result, these newly generated instances are
dense near the centroid and are sparse far from the centroid.

• CURE-SMOTE: Combining Clustering Using Representatives (CURE) with
SMOTE algorithm [21].

• MWSMOTE: Focusing on the shortcomings of the SMOTE algorithm, this
majority-weighted minority oversampling technique attempts to improve the sam-
ple selection and generation scheme [22]. It identifies difficult minority class
instances that are hard to classify correctly. It assigns weights to these hard-to-
learn instances based on their distance from the majority class instances.

• SMOTE-IPF: It adds a new element to SMOTE, an iterative ensemble-based
noise filter called Iterative-Partitioning Filter (IPF) [23]. This helps overcome
the problems produced by noisy and borderline examples in imbalanced datasets.

• ROSE: ROSE (Random Over-Sampling Examples) is a bootstrap-based tech-
nique [24]. It handles both continuous and categorical data by generating syn-
thetic examples from a conditional density estimate of the two classes. Unlike
simple ROS, ROSE provides a smoothed bootstrap approach, creating a syn-
thetic sample of data. This is done by adding small amounts of noise, ensuring
the synthetic samples are similar to real ones.

• G-SMOTE: It generates synthetic samples in a geometric region of the input
space, around each selected minority instance [25]. While in the basic config-
uration, this region is a hyper-sphere. G-SMOTE allows its deformation to a
hyper-spheroid.

• NEATER: It proposes a filtering method of the oversampled data using a non-
cooperative game theory [26]. Oversampling creates noisy samples in the pro-
cess that are eliminated in this approach.

Undersampling (US)

In US, samples from the majority class are removed to reduce the IR. This has been
illustrated in Fig 2.2. The simplest approach is to eliminate the samples randomly
without any consideration. This approach is known as Random Undersampling (RUS).
While this method is simple and fast, it can cause a loss of valuable information. To
avoid such complications, more strategic US approaches have been developed over the
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years. These approaches use different heuristics to select samples for removal. Some
of these approaches are based on the simple nearest-neighbor rule, while others utilize
evolutionary algorithms to find instances for removal. Again, some of these approaches
aim to balance the class distribution, while others try to reduce class overlapping by
eliminating instances from the majority class.

A summary of some of the most popular and recent US techniques is provided
below. The sample elimination by RUS is illustrated in Fig. 2.4.

• IRUS: This inverse random undersampling technique utilizes the bagging method
where the imbalance between the classes is reversed in different subsets of the
data [27].

• CBEUS: This algorithm integrates the clustering method (k-means clustering)
with the genetic algorithm to remove majority-class samples that are far away
from the centroid of each group [28].

• Tomek-link: This is a data cleaning approach. This algorithm first identifies
Tomek links in the data. A Tomek Link exists between two samples from differ-
ent classes if they are each other’s nearest neighbors. In this method, the instance
in the tomek-link belonging to the majority class is removed.

• ENN: Edited Nearest Neighbors, is a US technique used to remove noisy or
borderline instances from the majority class [29]. It is particularly useful when
the dataset contains overlapping clusters or when the majority class has instances
that are too close to the minority class. It uses the nearest neighbor rule to select
instances.

• CNN: Condensed Nearest Neighbor (CNN) is a technique used in imbalanced
learning for data reduction, particularly for large datasets with many instances
[30]. It significantly reduces the size of the dataset by selecting a subset of
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Figure 2.4: Majority class sample elimination using RUS
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representative samples while maintaining the discriminatory information. The
idea behind this approach is to eliminate the examples from the majority class
that are distant from the decision boundary and therefore, can be considered less
relevant for learning.

• ACOSampling: This is a meta-heuristic US approach that uses ant colony opti-
mization (ACO) to find a sub-optimal subset of the majority class for classifica-
tion [31].

• IHT: Instance hardness is a measure of how challenging a particular instance is
for a given learning algorithm to predict correctly [32]. It reflects the uncertainty
or ambiguity associated with individual instances. Instance hardness threshold-
ing involves setting a threshold on the hardness measure to filter out instances
below a certain hardness level.

Hybrid Sampling

Hybridization between OS and US is also a plausible solution, especially when the IR
is high. The goal is to have a balance between the two techniques. It limits the gen-
eration of too many synthetic instances to avoid overfitting. Similarly. it also reduces
the elimination of too many majority-class instances, lowering the loss of information.
This way, such a balanced hybridization can outperform the other techniques. Several
such hybridizations have been proposed and a summary of these approaches is pre-
sented below.

• SMOTE-Tomek: In this hybrid method, the Tomek-link approach is first used
for undersampling [33]. SMOTE is then used for oversampling. However, the
number of samples removed using this method is very limited. So, the perfor-
mance does not vary much from SMOTE.

• SMOTE-ENN: In this method, ENN is first used for undersampling, followed
by SMOTE [33]. ENN provides better cleaning than Tomek-link. More samples
are removed by ENN. Then SMOTE is used to generate the necessary number
of samples to balance the dataset.

• Random Balance: Here, US and OS techniques are combined with random
sampling ratios on different subsets [34]. It uses ensemble methods for obtaining
different subsets. The approach was later extended for multiclass imbalanced
scenarios [35].
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• SMOTE-CNN: Here, SMOTE is merged with the CNN approach [36]. CNN
provides a large reduction in the number of majority-class instances. Thereby,
this approach attains a better balance between OS and US.

Ensemble Methods

Ensemble algorithms are more robust compared to standard classifiers. Multiple weak
learners are combined in ensembles to obtain better performance and reduce overfitting
and bias. Bagging and boosting are two popular ensemble methods. Bagging uses
the bootstrapping technique to produce multiple subsets of the original data, whereas
boosting uses an instance weighting mechanism. While they are capable of reducing
overfitting and bias, they remain susceptible to the imbalanced classification problem
(the data the algorithms are trained on remains skewed).

Sampling approaches can be integrated into the ensemble learning frameworks.
In bagging, each bootstrap subset can be balanced using a sampling method. This
mitigates the class imbalance problem. However, it does not solve the class overlap
problem. Similarly, in boosting, sampling techniques are applied to the data in each
boosting iteration. Different such ensemble algorithms have been proposed and a sum-
mary is provided below.

• OverBagging: This method uses ROS to balance each bootstrap subset gener-
ated in the bagging process. The remaining process is the same as before.

• SMOTE-Bagging: Similar to the previous method, this approach uses SMOTE
to balance the bootstrap subsets.

• BRF: This approach uses RUS to balance the subsets [37]. The RF framework
is then used for prediction. Balancing the subsets and using an ensemble also
reduces the information loss as many such subsets are produced.

• RUSBoost: This approach uses RUS to balance the data. It uses the boosting
(AdaBoost) framework for learning.

Many other variations of the ensemble approaches for imbalanced learning have
been proposed. For instance, SMOTE-Boost, Under-Bagging, Easy Ensemble [38],
Hard Ensemble [39], EUSBoost [40], IMCStacking [41], etc.

2.2.2 Algorithmic Level Modification

In the algorithmic-level approach, the original classification algorithm is modified to
adapt to the imbalanced domain scenario. This is achieved by modifying the cost func-
tion to account for class imbalance directly. Specifically, higher misclassification costs
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are assigned to instances of the minority class, making the algorithm more sensitive
to errors involving those instances. During training, the model focuses on reducing
the overall misclassification cost. By assigning greater weight to misclassifications of
the minority class, the bias is shifted away from the majority class. This results in a
cost-sensitive (CS) algorithm. This approach is dependent on the classifier, as different
algorithms utilize different learning procedures.

Cost-Sensitive Learning

In Cost-Sensitive Learning (CSL), a specific penalty is assigned to misclassifications
of minority-class instances. Standard classifiers typically use a 0-1 loss function to
calculate the cost, where a correct classification scores 0 and an incorrect one scores
1. This error-driven (ED) approach assumes an even class distribution in the dataset.
However, when data is imbalanced, this method performs poorly, especially in terms
of sensitivity (the accuracy of minority class predictions). In many applications, cor-
rectly classifying minority-class instances, often representing positive cases, is crucial.
To address this, the concept of a cost-driven classifier is introduced, which employs
asymmetric misclassification costs. By assigning a higher cost to misclassifications
of minority-class instances compared to those of the majority class, the algorithm is
compelled to prioritize learning these instances correctly, thus reversing the bias. This
approach is particularly effective for imbalanced datasets.

The implementation of cost-sensitive algorithms relies on a cost matrix, as shown
in Table. 2.1. In this matrix, C

1
represents the penalty for errors in minority class

predictions, while C
2

represents the penalty for errors in majority class predictions.
Increasing the value of C

1
enhances the recall or sensitivity score. Typically, C

2
is

related to the specificity score and is usually set to 1. Assigning a higher weight to
majority-class instances can negatively impact the performance of the minority class,
so it is generally avoided. The penalty values can be chosen arbitrarily or optimized
using search algorithms.

The effect of modifying the weights of the instances on the decision boundary for
the Support Vector Machine (SVM) classifier is illustrated in Fig 2.5. As shown in the
figure, assigning a higher weight to certain instances compels the classifier to place
greater emphasis on correctly classifying those points, thereby altering the original

Table 2.1: Cost Matrix

Predicted True Predicted False
Actual True 0 C

1
Minority Class

Actual False C
2

0 Majority Class
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decision boundary.

2.3 Performance Evaluation

Evaluating the performance of machine learning (ML) models is crucial to understand-
ing their effectiveness, reliability, and suitability for a given task. Different metrics
and methods are used depending on the type of problem (classification, regression,
clustering, etc.). Accuracy is the most commonly used metric for classification tasks.
However, when the data is imbalanced, special consideration is required as traditional
measures of performance become biased. Let’s look at the example below.

Say, in a dataset, there are 10000 samples. 9900 of them belong to the negative
class (majority) and the remaining 100 belong to the positive class (minority). Now,
if the ML model predicts all the instances as negative, it will still be correct for 9900
cases, even though all the positive cases were predicted wrongly. The accuracy of
the prediction framework would be 99%, which is extremely high while the model is
actually failing to distinguish positive cases from negative ones. This type of scenario
occurs frequently when the data is imbalanced and therefore, an imbalanced domain
requires some special attention when it comes to performance evaluation.

The performance measures of classification models are defined based on a con-
fusion matrix. This is illustrated in Fig 2.6. There are four elements in a confusion
matrix. They are as follows.

• True Positive (TP): Predicted positive, actual positive.

• True Negative (TN): Predicted negative, actual negative.

• False Positive (FP): Predicted positive, actual negative.

• False Negative (FN): Predicted negative, actual positive.

Figure 2.5: Effect of modifying weights of the instances on the decision boundary.

16



Figure 2.6: Confusion Matrix.

Different performance measures are defined using these four elements. Some of
these measures are class-dependent, while others are composite metrics and more ro-
bust. Not all of them are suitable for performance measurements in imbalanced data.
These metrics are briefly described below.

2.3.1 Evaluation Metrics

• Accuracy: The ratio of correctly predicted instances to the total instances. This
metric is not suitable in imbalanced cases as the measures get biased by the
majority class.

Accuracy =
Number of Correct Predictions
Total Number of Predictions

Accuracy =
TP + TN

TP + TN + FP + FN

• Recall (Sensitivity or True Positive Rate): The ratio of correctly predicted
positive observations to all observations in the positive class. This is a class-
specific metric that shows the accuracy of the model in predicting positive cases.
While this measure is useful in understanding how accurately the model can
identify the positive cases, it does not show the entire spectra of performance on
the whole dataset.
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Recall =
TP

TP + FN

A sensitivity score of 0.8 in a dataset with only 100 minority-class samples im-
plies that the model misclassified 20 positive cases.

• Specificity (True Negative Rate): The ratio of correctly predicted negative ob-
servations to all observations in the negative class. This is another class-specific
metric that shows the accuracy of the model in predicting negative cases. While
this measure is useful in understanding how accurately the model can identify
the negative cases, it does not show the entire spectra of performance on the
whole dataset.

Specificity =
TN

FP + TN

A specificity score of 0.8 in a dataset with 10000 majority-class samples implies
that the model misclassified 2000 positive cases.

• Precision (Positive Predictive Value): The ratio of correctly predicted positive
observations to the total predicted positives. Although precision is very popular
in performance measurements, in the case of imbalanced data, this metric also
displays biased performance.

Precision =
TP

TP + FP

• F1 Score: The weighted average of Precision and Recall. This is a composite
metric that considers both precision and recall values. It only becomes high
when both precision and recall scores are good.

F1 Score = 2× Precision × Recall
Precision + Recall

• Balanced Accuracy: The arithmetic average of specificity and recall. This is a
composite metric that considers both specificity and recall values. This shows
the average performance of the model in both classes. This is much better than
the accuracy score as it considers the performance of individual classes.

Balanced Accuracy =
Sensitivity + Specificity

2

• Geometric Mean (G-mean): The geometric mean of specificity and recall. This
is another composite metric that considers both specificity and recall values. This
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portrays a more detailed picture of the performance of the model compared to
sensitivity and specificity alone. This is also much better than the simple bal-
anced accuracy score. Considering geometric mean allows higher penalization
in a drop in performance. If either sensitivity or specificity reduces, the g-mean
score reduces.

G-Mean =
√

Sensitivity × Specificity

• ROC-AUC: The ROC-AUC (Receiver Operating Characteristic - Area Under
the Curve) is a performance measurement for classification problems at various
threshold settings. The ROC curve is created by plotting the true positive rate
(TPR) against the false positive rate (FPR) at various threshold levels. The AUC
(Area Under the Curve) represents the degree or measure of separability, indi-
cating how well the model distinguishes between classes.

AUC =

∫ 1

0

TPR(t) d(FPR(t))

This integral represents the area under the ROC curve from FPR = 0 to FPR = 1.
The value of AUC ranges from 0 to 1, with 1 indicating perfect classification
and 0.5 indicating a model with no discriminative power (equivalent to random
guessing).

• MCC: The Matthews Correlation Coefficient (MCC) is a metric used to evaluate
the quality of binary classifications. It takes into account true and false positives
and negatives and is generally regarded as a balanced measure, even if the classes
are of very different sizes. This metric directly takes into account the actual
number of misclassifications, unlike other composite metrics.

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

2.3.2 Discussion on Appropriate Metrics for Imbalanced Data

Machine learning algorithms often excel at predicting instances from the majority class
but tend to perform poorly on the minority class. Consequently, traditional perfor-
mance metrics like accuracy can be misleading because they do not account for class
distribution. Sensitivity and specificity are two class-specific metrics that measure the
performance accuracy for the minority and majority classes, respectively. However,
they only reflect the performance of a particular class, making it challenging to capture
the overall performance spectrum.
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The geometric mean of sensitivity and specificity combines these metrics into a
single value representing the algorithm’s overall performance. This metric is partic-
ularly useful for evaluating performance on imbalanced datasets, as bias towards any
particular class results in a poor G-mean score. While G-mean reflects both sensitivity
and specificity, it does not illustrate the trade-off between them. Furthermore, it does
not account for the actual number of misclassifications made by the model. For in-
stance, a sensitivity score of 0.8 is not equivalent to a specificity score of 0.8 in skewed
datasets. A sensitivity score of 0.8 with only 100 minority-class samples implies that
the model misclassified 20 instances. Conversely, a specificity score of 0.8 with 10,000
majority-class samples indicates 2,000 misclassifications. This significant difference
in misclassifications must be considered when dealing with imbalanced data. If the
imbalance ratio is high, a specificity score of 0.8 would indicate a substantial number
of misclassifications in the majority class. A classifier might achieve a high sensitivity
score by correctly classifying a small number of minority class samples and a similar
specificity score by misclassifying a large number of majority class samples. Never-
theless, the G-mean score might still be high, failing to capture the inherent issue [42].

The balanced accuracy metric is more biased compared to the g-mean score. A
sensitivity score of 0 and a specificity score of 100 would still provide a balanced ac-
curacy score of 50. Whereas, the g-mean score would be 0. F1-score is the harmonic
mean of sensitivity and precision. However, this metric is also biased for similar rea-
sons.

In the ROC-AUC score, a scalar value representing the area under the ROC curve
allows for efficient performance comparison between different approaches. While this
metric is unaffected by data skewness, it may obscure poor performance [43]. Ad-
ditionally, the performance difference between the two approaches in terms of ROC-
AUC may be minimal, making comparison challenging.

The MCC score is a more robust measure of performance in classification tasks
[44]. It considers all four confusion matrix parameters and only provides a high score
when the classifier performs well across all categories. The MCC score will drop if too
many misclassifications are made. However, as the dataset becomes more imbalanced,
the behavior of MCC becomes skewed and nonlinear with respect to the TP and TN
values [45]. Nevertheless, among the composite metrics, only MCC considers the ac-
tual number of misclassifications, thereby providing an efficient performance measure.

The performance of the techniques on imbalanced data cannot be adequately rep-
resented by a single metric. Therefore, as suggested in previous literature [46], we do
not rely on a single metric to evaluate the performance. Rather, four composite metrics
were considered for evaluation.
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2.4 Related Study

In this section, we review some of the recent studies conducted on imbalanced learning.
We focus on those articles that provided a critical review of the approaches used in the
imbalanced domain.

While a lot of different techniques have been developed to tackle the imbalanced
classification problems, there are still lots of issues such as overfitting, poor perfor-
mance on highly imbalanced data, and large variations in the prediction [47]. This
necessitates an investigation into the underlying issues of imbalanced learning. It is
important to understand what makes imbalanced classification so difficult, what factors
limit the performance, what the main obstacles are, and how established approaches
address these challenges. We try to draw insights from already published articles. Un-
fortunately, there are very few articles investigating the original issues. We summarize
the findings below.

Dudjak et al. [9] identified several intrinsic data characteristics that make imbal-
anced classification challenging. These include the imbalance ratio, class overlap,
rarity of samples, presence of noisy samples, and small disjuncts. A higher degree
of imbalance naturally complicates the learning process. However, IR is not the only
source of learning difficulty. Other factors also have a significant effect on the perfor-
mance of different techniques.

Vuttipittayamongkol et al. [48] provided a detailed discussion on the effect of class
overlapping. They identified class overlapping as the primary factor affecting classifier
performance, suggesting that the impact of class imbalance is significantly influenced
by the presence of class overlap. They demonstrated that a higher degree of overlap-
ping can severely degrade performance, even when the data has only a small imbal-
ance. They claimed that IR is not the main contributing factor, but rather a supporting
factor. If there is no overlap, classifiers can perform extraordinarily well even in large
imbalanced scenarios. Whereas, with increased overlapping, the task becomes more
complicated with an increase in IR.

To demonstrate how different algorithms address the class overlapping issue, the
authors in [48] categorized the sampling techniques into two types: Class distribution-
based and class overlap-based. The class distribution-based approaches focus on bal-
ancing the data. On the contrary, class overlap-based approaches try to reduce over-
lapping or focus on the overlapping regions. In US-type methods, samples are strate-
gically removed from the overlapping regions to reduce the class overlap with the
minority-class instances. This category of techniques does not usually focus on bal-
ancing the data. The authors did not conduct any empirical study or analysis on the
performance of these algorithms related to overlapping or how these approaches tackle
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the overlapping issue (conducted in this thesis). An overview of the existing method-
ologies based on this proposed categorization is presented in Table 2.2.

Table 2.2: Categorization of sampling techniques

Category Type Methods
Class
overlap-
based

Oversampling ADASYN [16], SMOTE-IPF [23], Borderline-
SMOTE [18], SLSMOTE [19], MWMOTE [22]

Undersampling ENN [29], NCL [49], DBMUTE [50], OBU [51],
RD Tomek-link [52]

Ensemble Hard Ensemble [39], EVINCI [53]
Class
distribution-
based

Oversampling SMOTE [14] and most of its variants (DB-
SMOTE [20], LEE [54], Polynom-fit-SMOTE
[55], etc.), ROS

Undersampling RUS, IRUS [27], EBUS [56], Clustering-based
undersampling [57]

Ensemble SMOTE-Bagging [58], Over-Bagging, SMOTE-
Boost [59], RUSBoost [60], BRF [37], EUSBoost
[40]

Mercier et al. [4] analyzed the degradation of performance of classifiers in differ-
ent imbalanced contexts and proposed a way of measuring class overlapping called
’degOver’. There are several other proposed ways of quantifying class overlapping
and a detailed taxonomy of class overlap complexity measures is presented in this ar-
ticle [3].

In a recent article, Santos et al. [61] advocated for a unified view of class overlap-
ping and class imbalance and suggested that the presence of one element can enhance
the impact of the other. The authors suggested developing new techniques capable of
addressing both of these issues simultaneously, as existing approaches typically ad-
dress only one of these challenges at a time.

In a different study, Tarawneh et al. [62] pointed out that oversampling the data
using SMOTE and similar approaches generates noisy samples that do not accurately
represent the minority class. This leads to overfitting and over-optimistic results. The
authors further suggested to stop using oversampling techniques due to this reason.
However, they did not provide any direction as to how to tackle the imbalanced sce-
nario. OS is crucial to increase the presence of minority-class samples in the feature
space without which performance improvement becomes limited.

To get rid of the noisy samples generated in the oversampling process, some mod-
ifications to the SMOTE algorithm have been proposed. These approaches usually
apply a filter method to eliminate the noisy samples from the data before training. This
includes methods like SMOTE-IPF [23], DBMIST-US [63], SMOTE-ENN [33], etc.
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In the case of tabular data, the number of minority class samples available is usually
quite limited. Especially in medical-related fields, samples are very rare. This makes it
difficult to employ deep learning techniques such as Generative Adversarial Networks
(GAN) or Deep Reinforcement learning (DRL) as they require a higher number of
samples for training [64].

Most of these studies are focused on sampling techniques. A detailed review of
different CS methods is presented in this article by Petrides et al. [65]. The concept of
incorporating class overlapping and other data complexity factors into CS frameworks
is a relatively new idea and has not been attempted to the best of our knowledge. In this
thesis, a detailed experimental study is first conducted on the performance of different
approaches on a wide range of imbalanced data. The findings are consistent with the
concepts discussed in the aforementioned literature. Additionally, several new issues
were identified and are presented in the following chapter.
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Chapter 3

Efficacy Analysis of Different Techniques used in Imbal-
anced Learning

In this chapter, we first discuss the complexities of imbalanced classification tasks.
Different data intrinsic characteristics are responsible for the intricacy. An experimen-
tal study was conducted on 84 imbalanced datasets to evaluate the performance of 30
different state-of-the-art techniques with respect to IR, class overlapping, and other is-
sues. The findings from the investigation are detailed here.

3.1 What Makes Imbalanced Classification So Difficult

There are several factors contributing to the increased complexity of learning from
imbalanced data. Some were identified in previous literature [8,9,48,66–68]. From the
investigation conducted in this study, several other issues were noticed and highlighted
below. Possible solutions to the problems are also discussed.

• Rarity of the samples: This is one of the primary causes of difficulty in learning
the patterns from imbalanced data. When the number of minority-class samples
available is limited, it naturally complicates the learning task. If obtaining more
data is not an option, then OS is the only path to improve performance. However,
this may increase the chance of overfitting [62].

• Imbalance Ratio: Class imbalance is another major contributing factor. When
the data is skewed, classifiers naturally become biased towards the majority
class. With the increase of IR, the situation worsens. The impact of IR on the
performance of different techniques has been analyzed in this study. The find-
ings are presented in the following section. Class distribution-based methods
attempt to balance the data to reduce the effect of IR.

• Class Overlapping: It refers to the situation where data points from different
classes occupy the same region in the feature space. Class overlapping occurs
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Figure 3.1: Class overlap.

when instances of different classes are not well-separated and share similar fea-
ture values in a dataset. This overlap makes it difficult for a classification al-
gorithm to distinguish between the classes, leading to increased misclassifica-
tion rates. Class overlapping is particularly problematic in imbalanced datasets,
where the minority class has fewer samples, as it exacerbates the difficulty of
accurately identifying instances of the minority class. This can significantly de-
grade the performance of ML models. Class overlap also has a strong correlation
with class imbalance [69, 70].

Several authors have identified class overlapping as the primary cause behind
the complicacy in imbalanced learning [3, 48]. If there is no overlap, classifiers
such as SVM can easily distinguish positive cases from negative ones, even if
the data is highly imbalanced. This factor intensifies the effects of the other two
aforementioned factors. Necessary steps must be adopted to address this issue
and obtain desirable performance from classifiers [61, 71].

The class overlapping scenario is illustrated in Fig. 3.1.

• Noisy Samples: Real-world datasets always contain some noisy instances. This
can come from mislabeling some instances or other sources. Performing over-
sampling using such instances makes the dataspace more noisy. Besides, the
synthetic samples generated by the OS techniques also introduce some noisy in-
stances in the process. These samples can be difficult to identify. Moreover, most
of the established techniques used in imbalanced learning do not take this into
consideration, resulting in a loss of generalization and poor test performance.

• Small Disjuncts: Small disjuncts refer to subsets of the minority class that are
sparsely represented in the feature space, often isolated from other instances of
the same class. These small, isolated groups can be particularly challenging for
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Majority Class Instance
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Figure 3.2: Small disjuncts in data.

classification algorithms to learn from, as they may not capture the overall struc-
ture of the minority class and can lead to increased misclassification [72]. They
contribute to the overall difficulty of learning from imbalanced datasets, as the
classifier may struggle to accurately identify and separate these small disjuncts
from the majority class [73]. Smaller disjuncts are more susceptible to errors
than larger ones, and most erroneous predictions arise from these smaller dis-
juncts [74].

The presence of small disjuncts in data is illustrated in Fig. 3.2.

Apart from these issues, the application of sampling techniques or CSL introduces
new problems that limit the performance of the classifiers. These approaches also have
certain limitations. Very few studies have been conducted to understand their behavior.
On that account, a rigorous experimental study was conducted to analyze these issues.
These are discussed in the following sections.

3.2 Experimental Framework

Extensive experiments were conducted on a wide range of imbalanced datasets with
varying degrees of imbalance and overlapping scenarios. The performance of various
techniques on these datasets was carefully analyzed. An overview of the entire exper-
imental framework is illustrated in Fig. 3.3.
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Figure 3.3: Outline of the experimental setup.

3.2.1 Datasets

A total of 84 real-world datasets were utilized for this experiment. The datasets were
collected from various sources including UCI [75], and KEEL [76] data repositories.
All the datasets utilized here are publicly available with no missing entries. All are
binary classification scenarios. The IR of the datasets varied from 1.8 to 129. A sum-
mary of the datasets utilized in this study is provided in Table 3.1.

3.2.2 Methodologies

A total of 30 different methodologies were tested in this experiment. The most pop-
ular and recent methods were chosen for the experiment. This includes 13 OS tech-
niques, 7 US techniques, 7 ensemble techniques, 2 hybrid sampling techniques, and
cost-sensitive learning. The algorithms were chosen from all different categories to

27



Table 3.1: Summary of the datasets used in the experiment - I

Serial dataset # Samples IR Serial dataset # Samples IR
1 glass1 213 1.8 43 glass4 214 15.38
2 wisconsin 683 1.86 44 ecoli4 336 15.75
3 pima 768 1.87 45 page-blocks-1-3_vs_4 472 15.82
4 glass0 213 2.09 46 abalone 731 16.4
5 yeast1 1483 2.46 47 dermatology-6 358 16.85
6 vehicle2 846 2.88 48 glass-0-1-6_vs_5 184 19.33
7 vehicle1 846 2.9 49 shuttle-6_vs_2-3 230 21.9
8 vehicle3 846 2.99 50 yeast-1-4-5-8_vs_7 693 22.07
9 vehicle0 845 3.27 51 flare-F 1066 23.77
10 new-thyroid1 215 5.11 52 car-good 1728 24.03
11 ecoli2 336 5.44 53 car-vgood 1728 25.57
12 glass6 214 6.34 54 kr-vs-k-zero-one_vs_draw 2901 26.88
13 yeast 1484 8.1 55 yeast4 1484 28.08
14 yeast3 1484 8.1 56 kr-vs-k-one_vs_fifteen 2244 28.13
15 ecoli3 336 8.57 57 winequality-red-4 1599 29.15
16 page-blocks0 5472 8.79 58 yeast128 947 30.53
17 ecoli-0-3-4_vs_5 200 8.95 59 yeast5 1484 32.7
18 ecoli-0-2-3-4_vs_5 202 9.05 60 abalone-3_vs_11 502 34.79
19 ecoli-0-6-7_vs_3-5 222 9.05 61 kr-vs-k-three_vs_eleven 2935 35.22
20 glass-0-1-5_vs_2 172 9.06 62 winequality-red-8_vs_6 656 35.39
21 yeast-2_vs_4 514 9.06 63 ecoli_013vs26 281 39
22 ecoli-0-4-6_vs_5 203 9.1 64 abalone-17_vs_7-8-9-10 2338 39.29
23 yeast-0-3-5-9_vs_7-8 506 9.1 65 yeast6 1483 41.37
24 glass-0-4_vs_5 92 9.11 66 abalone-21_vs_8 581 43.62
25 yeast-0-2-5-6_vs_3-7-8-9 1004 9.13 67 winequality-white-3_vs_7 900 43.95
26 yeast-0-2-5-7-9_vs_3-6-8 1004 9.13 68 winequality-red-8_vs_6-7 855 46.44
27 ecoli-0-2-6-7_vs_3-5 224 9.14 69 kddcup-land_vs_portsweep 1060 49.48
28 ecoli-0-3-4-6_vs_5 205 9.2 70 abalone-19_vs_10-11-12-13 1622 51.29
29 ecoli-0-3-4-7_vs_5-6 257 9.24 71 kr-vs-k-zero_vs_eight 1460 55.12
30 ecoli-0-6-7_vs_5 220 9.95 72 winequality_white 1481 58.24
31 vowel 988 9.98 73 winequality-white-3-9_vs_5 1484 58.24
32 glass-0-1-6_vs_2 192 10.24 74 poker-8-9_vs_6 1484 58.36
33 ecoli-0-1-4-7_vs_2-3-5-6 336 10.55 75 winequality-red-3_vs_5 691 68
34 glass-0-6_vs_5 108 10.89 76 abalone_20 1916 72.65
35 led7digit-0-2-4-5-6-7-8-9_vs_1 443 10.95 77 kddcup-buffer_overflow_vs_back 2233 73.4
36 glass-0-1-4-6_vs_2 205 11 78 kddcup-land_vs_satan 1609 79.45
37 glass2 214 11.53 79 kr-vs-k-zero_vs_fifteen 2193 80.19
38 ecoli-0-1-4-7_vs_5-6 332 12.24 80 poker-8-9_vs_5 2074 81.96
39 cleveland-0_vs_4 177 12.54 81 poker_86 1477 85.82
40 ecoli-0-1-4-6_vs_5 332 12.95 82 kddcup-rootkit-imap_vs_back 2225 100.09
41 shuttle-c0-vs-c4 1829 13.86 83 kddr_rookkit 2225 100.14
42 yeast-1_vs_7 459 14.27 84 abalone19 4174 129.41

obtain a good understanding of how different types of approaches fare in imbalanced
classification tasks. Providing a detailed description of the algorithms is outside the
scope of this manuscript. Detailed information on the algorithms is available in the
original papers. The methodologies utilized in the experiment are listed in Fig. 3.4.

Two ML models were considered for the classification: Random Forest (RF) and
SVM. Both of these classifiers were employed using the sklearn library.

3.2.3 Setup

Working with imbalanced data requires careful handling. To prevent data leakage,
the data was initially split into training and testing sets. Only the training set was re-
sampled, while the testing set remained untouched and was used solely for validation
purposes. Data normalization was performed before sampling using MinMax scaling.
No feature selection was applied. A stratified 5-fold cross-validation scheme was em-
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Figure 3.4: The methodologies utilized in experiment I.

ployed, and the average results from the five different testing folds were considered.
The sklearn library was utilized to implement the ML models. The imblearn and

smote-variants libraries were utilized to implement the sampling techniques. The
default parameter settings of the libraries were adopted. No hyperparameter tuning
was performed. Five different measures were calculated to evaluate the performance:
MCC, G-mean, ROC-AUC, sensitivity, and specificity.

For ease of discussion, the datasets were grouped into 3 categories based on their
IR. Analysis and discussions have been provided accordingly.

• low imbalance: IR<10

• mid imbalance: IR=10-30

• high imbalance: IR>30

To assess the class overlap before and after resampling, we utilized the augmented
R-value [71], an extension of the R-value [77] designed for imbalanced data. This
extended version of the R-value provides a more nuanced assessment of how well
classes are separated. It quantifies the degree of overlap between classes, which is
crucial for understanding the separability of different classes in the feature space. R-
values range from 0 (no overlap) to 1 (complete overlap).

3.3 Results and Discussion

In this section, the performance results obtained from the experiments have been pre-
sented. Due to the numerous techniques tested across a wide range of datasets, pro-
viding detailed performance measures for each algorithm on every individual dataset
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is impractical for this article. These specific results can be found in the associated
GitHub repository. The average of the results on all datasets has been presented in this
manuscript. The MCC score is primarily considered for comparison due to its robust-
ness. Other composite metrics show similar performance (provided in supplementary
files).

The average MCC scores obtained using the SVM and RF classifiers as well as the
ensemble methods are provided in Table 3.2, 3.3, and 3.4, respectively.

3.3.1 Performance analysis of classifiers with no sampling

With no sampling performed in the data, the performance from the classifiers is usually
the lowest. However, there is a noticeable variation in different ranges of IR. For
instance, the average MCC score obtained from the datasets with IR<10 is 59.90% for
the SVM classifier. In comparison, the value is only 36.29% on datasets with IR>30,
demonstrating a clear drop in performance.

The SVM classifier usually benefits more from sampling than the RF classifier.
The average MCC score obtained from the RF classifier in low IR cases is 67.65%,
almost 8% higher than the SVM classifier. The RF classifier constantly provides better
performance than the SVM classifier in all imbalanced scenarios.

In low IR cases, the performance improvement from sampling is small. RF works
pretty well without sampling in these low IR settings. However, as the IR increases, the
difference in performance becomes apparent. Especially, in high IR scenarios, there is
a major difference in performance indicating the importance of using some measures
to address the class imbalance issue.

3.3.2 Performance analysis of the oversampling techniques

A total of 13 OS algorithms were evaluated in this study. Nearly all of these techniques
significantly enhanced performance across various imbalanced scenarios. The perfor-
mance of different SMOTE variants showed little variation. Among the OS techniques,
LVQ-SMOTE, LEE, Polynom-fit-SMOTE, and SMOTE-IPF emerged as top perform-
ers. LEE achieved the highest average Matthews Correlation Coefficient (MCC) score
of 69.6% for datasets with an imbalance ratio (IR) of less than 10, and it also performed
well on highly imbalanced datasets. Polynom-fit-SMOTE recorded the highest aver-
age MCC scores of 59.6% for datasets with an IR between 10 and 30, and 49.3% for
those with an IR greater than 30. Although there is a noticeable decline in performance
with higher imbalances, it is important to note that the OS algorithms outperformed all
other sampling techniques.

The decline in performance can be attributed to the high IR, which necessitates
generating a substantial number of new samples to balance the dataset. Generating
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Figure 3.5: Performance comparison among the OS approaches for the SVM classifier.

many new samples from a limited number of examples can produce noisy samples that
may not accurately represent the minority class, leading to a lower MCC score. An-
other limitation of these oversampling (OS) techniques is that most do not address the
issue of overlapping. While increasing the number of minority-class samples improves
performance, it also increases the overlapping with the majority-class instances.

Performance comparison among the OS approaches for different imbalanced sce-
narios is illustrated in Fig. 3.5.

3.3.3 Performance analysis of the undersampling techniques

A total of seven undersampling (US) approaches were tested in this study. While
these techniques generally improved performance, some critical observations were
noted. These techniques performed well with lower IR, but all showed a significant
decline in performance as the IR increased. Among the under-samplers, the Neighbor-
hood Cleaning Rule (NC) achieved the best results, with an MCC score of 68.25% for
datasets with an IR of up to 10. However, NC’s average MCC score dropped to 54.65%
for datasets with an IR between 10 and 30, and it declined by an additional 12% for
datasets with an IR greater than 30. Similar performance declines were observed with
other US algorithms as well.

One key reason for this performance decline is that US techniques remove samples
from the data to reduce overlapping and IR. Five of these US techniques focus on
reducing overlapping, while only RUS and NearMiss aim to balance class distribution.
When the IR is low, the overlapping-based techniques effectively manage to alleviate
the scenario, resulting in high prediction performance. However, as the IR increases,
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Table 3.2: Average MCC scores obtained using the SVM classifier (in percentage)

Method IR < 10 10 ≤ IR ≤ 30 IR ≥ 30 ALL
No sampling 59.9066 41.4498 36.2987 46.852

ROS 63.064 59.16717 50.01539 57.8051
ADASYN 60.6251 60.31106 50.02387 57.2376
SMOTE 64.4388 60.95442 50.36484 58.9897
BL-SMOTE 61.8858 60.70964 52.00332 58.4538
Polynom-fit-SMOTE 63.6602 59.674 49.46852 58.0188
ProWSyn 63.5236 60.011 50.10668 58.2696
SMOTE-IPF 64.2148 60.80276 50.10144 58.7759
SMOBD 64.126 59.67873 52.75457 59.2167
G-SMOTE 63.9946 60.53311 50.60008 58.7634
CCR 57.3101 41.89904 40.50158 47.3109
LEE 66.0069 59.55648 53.11975 60.0056
LVQ-SMOTE 61.9744 55.60123 52.10993 56.9351
Assembled-SMOTE 63.7104 60.76362 50.049 58.5561

RUS 59.8243 48.69019 38.97676 49.8989
NC 64.772 48.78341 38.87265 51.7723
ENN 63.3109 48.12443 39.68862 51.2668
CNN 59.6868 42.83827 34.56104 46.6603
OSS 61.7677 40.46503 36.35419 47.2696
Tomek-Link 61.5356 42.02024 37.03837 47.8765
Near-Miss 43.8894 30.95112 33.13978 36.538

SMOTE-ENN 62.6756 59.89414 49.89829 57.847
SMOTE-Tomek 64.3823 60.99517 50.36499 58.9809

CS-SVM 63.3358 59.27992 49.99665 57.9374

these methods fail to balance the data adequately. While they may reduce overlapping
to some extent, the data remains significantly imbalanced, leading to a persistent bias
towards the majority class.

On the other hand, RUS and NearMiss algorithms balance the distribution by re-
moving samples, which leads to information loss. In highly imbalanced datasets, this
can result in a significant loss of information, making the system unreliable for ac-
curate predictions. Additionally, these US techniques do not increase the presence of
minority-class samples in the data, causing the classifier to fail to correctly identify
rare samples. This explains why the performance of US techniques is comparatively
much lower than that of OS approaches.

Based on the experimental results, it can be concluded that while US strategies can
effectively handle scenarios with lower class imbalance, they are entirely inappropriate
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Table 3.3: Average MCC scores obtained using the RF classifier (in percentage)

Method IR < 10 10 ≤ IR ≤ 30 IR ≥ 30 ALL
No sampling 67.6556 50.6669 40.4831 53.9504

ROS 68.4453 59.0486 42.3317 57.4248
ADASYN 66.6317 57.5994 48.9715 58.3478
SMOTE 68.478 56.2975 46.883 57.9959
BL-SMOTE 66.8481 56.7566 45.6772 57.1459
Polynom-fit-SMOTE 68.7153 59.6327 49.348 59.886
ProWSyn 67.1571 56.5078 49.2264 58.2874
SMOTE-IPF 68.0929 57.5526 48.817 58.8396
SMOBD 68.183 55.9325 48.5586 58.2908
G- SMOTE 68.2207 58.4023 45.7059 58.1863
CCR 64.9599 49.9223 45.544 54.2674
LEE 69.5995 57.9977 46.6672 58.882
LVQ-SMOTE 66.157 58.0008 51.7078 59.1415
Assembled-SMOTE 67.8934 57.5967 46.9704 58.2045

RUS 62.8466 50.9698 39.5832 51.941
NC 68.246 54.6524 42.9226 56.1683
ENN 67.1091 53.5512 41.9704 55.0998
CNN 65.3988 52.4464 40.82 53.7512
OSS 67.2108 51.4952 39.4544 53.7195
Tomek-Link 68.4159 51.6779 40.8344 54.6616
Near-Miss 47.2432 32.8239 30.4928 37.5698

SMOTE-ENN 65.4524 58.721 49.8293 58.5148
SMOTE-Tomek 68.3949 56.1696 47.3205 58.0605

CS-RF 67.0366 52.2709 40.0523 53.7749

Table 3.4: Average MCC scores obtained using the ensemble methods (in percentage))

Method IR < 10 10 ≤ IR ≤ 30 IR ≥ 30 ALL
BRF 64.5724 54.061 40.5768 53.8633
Balanced-Bagging 62.6736 52.8011 40.6634 52.779
Over-Bagging 64.2763 52.0729 38.1633 52.385
SMOTE-Bagging 65.774 51.4461 41.5806 53.8749
RUSBoost 57.144 52.8859 39.2745 50.2768
Over-Boost 63.5572 58.5065 43.728 55.8358
Easy Ensemble 60.0863 53.036 36.3134 50.5205

and should be avoided when dealing with highly imbalanced data.
Performance comparison among the US approaches for different imbalanced sce-

narios is illustrated in Fig. 3.6.
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Figure 3.6: Performance comparison among the US approaches for the SVM classifier.

3.3.4 Performance analysis of the hybrid sampling techniques

The hybrid sampling approach combines both oversampling (OS) and undersampling
(US) strategies to achieve a more balanced sampling method. In this study, two popular
hybrid sampling approaches, SMOTE-ENN and SMOTE-Tomek, were tested. Both
approaches yielded significantly better results than their undersampling counterparts
but did not show much improvement compared to the SMOTE algorithm alone. Their
performance was comparable to other OS techniques. For instance, SMOTE-ENN
produced an MCC score of 57.85% for the SVM classifier. Compared to that, the
US method ENN produced a much lower MCC score of 51.26%. SMOTE, however,
produced a slightly higher score of 59%. The hybridization did not produce much
improvement over SMOTE and its variants. For the RF classifier, resampling the
data with SMOTE-ENN (MCC score = 58.5%) worked marginally better compared
to SMOTE (MCC score = 58%).

Hybridization has promising potential, particularly in highly imbalanced scenarios,
as evidenced by some recent applications [36] as well as our experiment. For highly
imbalanced datasets, SMOTE-ENN (MCC score = 49.83%) performed much better
than SMOTE (MCC score = 46.88%).

Despite its potential advantages, the exploration of hybrid methods in the existing
literature remains relatively limited. Hybrid methods can simultaneously address both
overlapping and IR problems, potentially leading to better results. Further investigation
and empirical studies are recommended to comprehensively assess the efficacy and
applicability of hybrid approaches across diverse datasets.
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3.3.5 Performance analysis of the ensemble algorithms

Ensemble algorithms combine multiple weak learners to enhance prediction perfor-
mance. In this research, we tested seven popular ensemble algorithms used in imbal-
anced learning, with Decision Tree as the base learner. SMOTE-Bagging and Over-
Bagging are two OS-based bagging ensemble techniques, while RUSBoost and Over-
Boost are boosting-based ensemble approaches. Although ensemble approaches aim
to improve performance, this improvement was not realized in imbalanced cases. Most
ensembles did not outperform the US techniques, and their performance was notably
poor on highly imbalanced datasets. The results from the ensemble algorithms are
shown in Table 3.

Among these algorithms, the OverBoost technique performed the best, achieving
an MCC of 63.55% when the IR was less than 10. However, its performance dropped
to 58.50% as the IR increased up to 30, and further degraded significantly for datasets
with an IR greater than 30, scoring only 43.72%.

Bagging ensembles operate on bootstrapping, which creates random subsets of
data. Weak learners are individually trained on these subsets, and predictions are ag-
gregated later. However, this method does not address the imbalance issue, so the boot-
strap subsets are resampled using RUS or SMOTE to achieve balance. Nevertheless,
the original problems associated with these sampling techniques remain. Incorporating
the RUS approach into an ensemble reduces the chance of information loss, resulting in
slightly better performance from BRF or BB compared to RUS alone. However, since
the RUS algorithm does not resolve the class overlapping issue, it persists in the en-
semble approaches, leading to poorer performance compared to other US techniques.

The experimental results clearly indicate that directly preprocessing the entire dataset
with SMOTE or its variants provides better results than combining them with ensem-
ble learning frameworks, especially in highly imbalanced cases. To achieve better
outcomes, the underlying sampling techniques must first address the issues of imbal-
anced learning.

Performance comparison among the ensemble approaches for different imbalanced
scenarios is illustrated in Fig. 3.7.

3.3.6 Performance analysis of the cost-sensitive learning technique

CSL is an algorithm-level modification that increases the misclassification cost for
minority samples. By imposing a higher penalty for misclassifying minority class
samples, the algorithm is incentivized to minimize such errors to reduce the overall
cost. In this study, different misclassification costs were assigned to each dataset,
which was proportional to the IR of the specific dataset (default setting of the sklearn
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Figure 3.7: Performance comparison among the ensemble approaches.

library).
As can be observed from Table 3.2, the CS-SVM approach far outperforms the

standard SVM classifier for all imbalanced cases. Especially in highly imbalanced
cases, there was a significant boost in performance. The standard SVM classifier pro-
duced an MCC score of 36.3% in datasets with IR>30, whereas CS-SVM achieved
an MCC score of 50%. CS-SVM also performed much better than US and ensemble
methods. Its performance was comparable with the OS approaches. As for the RF
classifier, this ensemble method is found to be less sensitive to CSL. Data resampling
works much better compared to CSL in the case of the RF classifier.

3.3.7 Performance comparison of all the techniques

In this study, a total of 30 methods for handling imbalanced data were explored.
Among the tested algorithms, Polynom-fit-SMOTE, a variant of SMOTE, achieved the
highest average MCC score of 59.886% across all datasets. Most techniques performed
well with less skewed data (IR < 10), but as the IR increased, the performance of all
techniques declined. This decline was most pronounced in undersampling strategies.
Ensemble approaches also struggled with larger imbalances and in highly imbalanced
cases (IR > 30), the performance of both undersampling and ensemble approaches was
significantly lower, making them unsuitable for such data. The performance fluctua-
tion was the least among oversampling techniques.

Among all techniques, US approaches had the lowest average MCC scores. The
best-performing undersampling algorithm, Neighborhood Cleaning (NC), scored only
51.77% (SVM), which is significantly lower than the scores achieved by OS approaches.
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Figure 3.8: Performance comparison among different categories of approaches used in im-
balanced learning.

Based on the results of all experiments, it can be concluded that SMOTE variants are
much more effective in handling datasets with high imbalances compared to other im-
balanced data handling approaches. The SVM classifier is more susceptible to class
imbalance and benefits more from the application of sampling or CSL approaches.

Performance comparison among the different categories of approaches (best from
each category) for different imbalanced scenarios is illustrated in Fig. 3.8.

3.4 Effect of Sampling Techniques on Class Overlapping

Class overlapping has been identified as one of the primary factors behind the per-
formance drop in imbalanced data. Several investigations have been conducted by
researchers on synthetic data to demonstrate its effect [3, 46, 70]. Santos et al. pro-
vided a unifying view of class imbalance with overlapping in their article [61]. The
relation of class overlapping with the performance of the classifiers has been demon-
strated in those articles as well. So, it has not been repeated in this manuscript. As the
degree of overlap increases, it becomes progressively more challenging for classifiers
to differentiate between opposing classes. Several methods have also been proposed to
alleviate the issue [51, 78–80]. The traditional CSL approach does not consider class
overlapping. No articles have been found addressing class overlapping while applying
CSL.

Experiments were also conducted in this study to understand the effect of sam-
pling techniques on class overlapping on real-world datasets. Two different measures:
Augmented R-value [71] and degree overlap [4] were calculated to observe the level
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Figure 3.9: Effect of different sampling techniques on class overlapping.

of overlapping before and after sampling. Fig. 3.9 shows the effect on the datasets
(average) based on augmented R-value for some selected sampling techniques. The
detailed measures are provided in the supplementary files.

As can be observed from the figure, OS techniques such as SMOTE or ADASYN
increase the overlapping while US approaches such as NCL or IHT reduce overlapping.
The highest reduction has been observed in the SMOTE-ENN technique. Similar sce-
narios can be found in other sampling techniques as well. Although OS techniques
raise the R-value, as has been presented in the previous section, OS techniques also
produce the highest scores. This indicates and verifies that class overlapping is not
the only contributing factor behind learning difficulties in imbalanced data. Other fac-
tors also play a key role in determining the performance of different techniques. All
these factors together make learning difficult and therefore, all the factors need to be
addressed to obtain desirable performance.

3.5 Limitations of Different Techniques Used in the Imbalanced
Domain

In the previous sections, the performance of different techniques has been analyzed
with respect to class imbalance and overlapping. Based on this investigation, a critical
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review of the techniques has been provided here.
For this purpose, let us consider a scenario where the dataset has 10000 samples

with an IR of 100. So, there are 100 instances belonging to the minority class, and the
remaining 9900 samples belong to the majority class.

3.5.1 Undersampling

• RUS and Near-Miss are two class distribution-based US approaches. Such tech-
niques remove the necessary number of samples from the majority class to bal-
ance the data. This can lead to unusual scenarios when the classes are signif-
icantly imbalanced. In the aforementioned scenario, balancing the distribution
would require removing 9,800 majority-class samples, which is impractical and
would result in a substantial loss of information. Although this approach would
significantly improve the sensitivity score, it would also cause a decline in the
specificity score. Even a small decrease in specificity indicates a large number
of misclassifications, which is undesirable for any practical system.

• Other five techniques tested in this study (NCL, ENN, CNN, OSS, and IHT) are
overlap-based approaches. These techniques try to reduce the class overlapping
by carefully removing certain majority-class samples from the data. Different
heuristics are adopted by the algorithms for selecting instances. These tech-
niques do not balance the class distribution as the number of samples removed
in the process is limited. As a result, they work well in low imbalances but fail
in highly imbalanced datasets. If enough samples are not removed, the class im-
balance persists and the classifier remains biased towards the majority class.

For instance, in the above-mentioned dataset with 10000 samples, overlapping-
based US techniques might eliminate 1400 samples. However, this would still
leave 8,500 majority-class samples compared to only 100 minority-class sam-
ples. So, the data remains skewed even after sampling. Additional measures
need to be taken to alleviate the scenario.

• The fact that the undersampling strategies do not enhance the presence of rare
samples in the region is another significant problem with them. With few minority-
class occurrences, it is challenging for the classifier to learn patterns. The un-
common samples may occasionally be seen by the classifier as noise in the data
in extremely unbalanced situations. Raising the proportion of minority-class
samples is essential for obtaining the high sensitivity that is frequently required
in practical applications.
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3.5.2 Oversampling

• Non-heuristic oversampling technique ROS just duplicates the existing samples
to balance the class distribution. It does not add any new information. Duplicat-
ing samples this way usually causes overfitting and poor performance.

• SMOTE and its variants generate synthetic samples to balance the class distribu-
tion. Some of the variants such as BL-SMOTE and DBSMOTE are very careful
as to where the samples are generated in the feature space (e.g., samples are
generated along the decision boundary). Other variants generate samples every-
where in the feature space without any consideration. The question that has been
raised is the authenticity of the synthetic samples that are generated. Some of
the synthesized samples do not match the characteristics of the original minority
class, increasing the chance of overfitting and poor performance while testing in
real-world scenarios.

• Oversampling techniques like SMOTE and its variants aim to balance class dis-
tribution by generating the necessary number of minority-class samples. How-
ever, these algorithms generate samples arbitrarily without specific selection cri-
teria for interpolation. A common issue with all these approaches is that in cases
of high IR, an excessive number of samples must be generated to achieve bal-
ance.

For example, in the scenario mentioned earlier, 9,800 samples would need to be
generated from only 100 samples to attain balance. This can naturally lead to
overfitting. To address this issue, the number of generated samples should not
be excessively high.

• Another problem with OS techniques is the potential generation of noisy sam-
ples. Such noisy samples bias the classifiers resulting in the misclassification of
majority-class instances. It is essential to carefully identify and remove these
noisy samples from the data after sampling. Some SMOTE variants, such as
LEE and SMOTE-IPF, incorporate this concept to address the issue.

• Another problem with applying OS techniques is that as new samples are gener-
ated, the dataset size is increased. This becomes problematic when dealing with
large datasets. Oversampling can nearly double the size of the original dataset,
significantly slowing down the training process and making it excessively time-
consuming for big data applications.
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3.5.3 Ensembles

• The aforementioned problems of the US techniques persist to some extent when
these methods are integrated into an ensemble learning framework. The imbal-
ance issue is not solved by forming an ensemble. However, because of boot-
strapping, there is less information loss in the bagging process.

• Similarly, when OS methods are integrated into an ensemble learning frame-
work, the original issues with the OS techniques persist. For instance, balancing
each bootstrap subset with OS techniques will increase the size of each of them,
significantly increasing the training time.

• While ensemble methods usually outperform traditional approaches, in the case
of imbalanced data, this is not the case. The performance depends more on
how well the data is resampled for training. Performance improvement was also
found to be limited.

3.5.4 Cost Sensitive Learning

In traditional cost-sensitive approaches, the same cost value is typically assigned to
all minority-class instances, which raises significant concerns. Not all minority-class
instances present the same level of difficulty; those closer to the decision boundary are
more likely to be misclassified than those farther away. It is crucial to penalize more
difficult-to-learn instances more heavily than others, based on their proximity to the
decision boundary. Otherwise, this can create some concerning issues while learning.

For example, in a dataset with an IR of 100, all minority-class instances would
be penalized 100 times more than any majority-class instances (default sklearn imple-
mentation). This approach can lead to an unusual distortion of the decision boundary,
resulting in a higher number of misclassifications of majority-class instances (reduced
specificity score) during testing. Imposing unnecessarily high penalties on minority-
class samples located far from the decision boundary biases predictions toward the
minority class. This causes overfitting and loss of generalization. As such, these type
of weighted classifiers tend to perform poorly on test data.
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Chapter 4

UniSyn: A Unified Sampling Framework to Jointly Ad-
dress Class Imbalance and Overlapping

Based on the investigations conducted on the sampling techniques and their identified
limitations, a novel data resampling framework has been proposed in this thesis. The
proposed algorithm aims to minimize the drawbacks of the established approaches and
address all the data difficulty factors of imbalanced learning. The proposed methodol-
ogy is presented in this chapter.

4.1 Overview

After examining the various methods currently employed to address class imbalance,
we see the necessity for a novel approach that can simultaneously handle all data com-
plexity issues. The established approaches fall short of addressing all those issues
properly. It’s challenging for a single sampling algorithm to meet all these require-
ments. Therefore, we propose a unified approach through hybridization to achieve the
objectives. The aim is to develop a sampling framework that delivers well-generalized
performance across a variety of imbalanced datasets. In the proposed approach, we
address all data difficulty factors and the limitations of existing sampling techniques
in multiple stages. This enables the algorithm to perform effectively in both low and
high-imbalance situations, as well as in scenarios with small and large overlaps. Rig-
orous experiments have been conducted to evaluate the performance of the proposed
approach. The methodology has been compared with other state-of-the-art techniques
used in imbalanced learning. The proposed algorithm significantly outperformed all
other approaches across all four composite metrics. Its consistent delivery of optimal
results and exceptional performance on highly skewed datasets demonstrate the robust-
ness of the proposed approach and its superiority over other sampling techniques.
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4.2 Background

It has been noted that overlap-based techniques achieve similar performance in datasets
with low imbalance. However, only reducing overlap is often insufficient for highly
skewed data, as these techniques tend to underperform with greater imbalances. In sit-
uations where minority class samples are scarce, it is crucial to enhance their presence
to achieve satisfactory performance. Otherwise, the classifier will exhibit very low
sensitivity. If the data continues to be significantly imbalanced even after sampling,
the overall classification performance will suffer. This is the main limitation of the
overlap-based approaches found in our investigations.

Conversely, simply balancing the class distribution does not ensure enhanced per-
formance. If overlap is not addressed during the process, the situation may not sig-
nificantly improve. A classifier can perform well even with high imbalance levels
if there is no overlap. However, most real-world datasets inherently have some de-
gree of overlap, which is a major factor contributing to low classification accuracy.
Distribution-based techniques aim to balance the class distribution, but this can lead to
excessive resampling, particularly in highly imbalanced scenarios. Creating too many
synthetic samples can cause overfitting and these samples may not accurately represent
the minority class. This also increases class overlap, complicating the decision bound-
ary. Additionally, undersampling requires removing a significant number of samples
to achieve balance, resulting in information loss and a substantial decrease in speci-
ficity. These are the main limitations of the distribution-based approaches found in our
investigations.

In our proposed methodology, we want to attain a balance between these two cat-
egories of approaches while simultaneously considering other data difficulty factors.
Therefore, an undersampling approach is utilized to reduce overlapping and an over-
sampling technique is utilized to increase the presence of minority-class instances as
well as balance the data. However, since these can create some other issues as dis-
cussed earlier, certain strategies have been adopted to avoid such scenarios.

Methods like SMOTE and its variants generate samples indiscriminately, without
specific selection criteria for interpolation. Consequently, many of the synthesized
samples do not enhance the classifier’s performance and are essentially useless. This
also raises the chance of producing samples that do not accurately represent the original
class, leading to increased overfitting. Techniques such as Borderline-SMOTE are
more careful in boosting the presence of minority class samples in challenging areas.
However, all oversampling methods tend to create noisy samples, which need to be
addressed.

While oversampling significantly improves the sensitivity score, it also increases
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the number of misclassifications for majority class samples due to heightened overlap.
Therefore, evaluating the performance of sampling techniques should include consid-
ering the misclassification rates for both classes to ensure a comprehensive assessment.

4.3 Proposed Methodology

A novel unified sampling framework has been proposed in this thesis. It has been
outlined in this section. The method is divided into four stages. They are discussed
below.

4.3.1 Oversampling

The presence of minority-class samples in the dataset is crucial for achieving good
sensitivity. In imbalanced data, the number of positive instances is often limited, mak-
ing it challenging to achieve high sensitivity without increasing their number. Thus,
oversampling techniques are necessary to boost the number of minority-class samples.

However, oversampling can introduce issues. Traditional oversampling methods
generate the required number of samples to balance the class distribution, often ran-
domly across the dataspace, as seen in SMOTE and similar approaches. This can lead
to overfitting since the generated instances may not accurately represent the minority
class. Additionally, creating too many new samples increases overlap and introduces
noisy instances into the data.

To effectively address these issues and prevent complications, we developed a cus-
tomized version of the SMOTE algorithm for oversampling. Initially, we categorized
the minority class samples into four types: Safe, Borderline, Rare, and Outlier. This
categorization was proposed by Napierala et al. [81]. This process uses the nearest
neighbor rule to categorize samples based on their respective neighborhoods, consid-
ering the five nearest neighbors during the experiment. The categorization is shown in
Fig. 4.1.

• Safe: Safe samples have at most one neighbor from the opposite class.

• Border: Borderline samples have two or three neighbors from the opposite class.

• Rare: Rare samples have four neighbors from the opposite class.

• Outlier: Outliers are minority class samples entirely surrounded by opposite
class instances.

Among these categories, safe samples are usually far from the decision bound-
ary and have a low chance of being misclassified, making oversampling in this region
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Figure 4.1: A representation of different categories of minority class instances: A and B are
safe samples, C is a borderline sample, D represents a rare sample, and E is an outlier.

redundant. It is more effective to increase the number of minority-class samples in
challenging areas. Therefore, we generated new synthetic samples around borderline
and rare minority-class samples. The outliers are completely surrounded by instances
from the opposite class. They are likely to be noisy instances. Using these instances to
generate new instances can cause unusual synthetic samples that are most likely unrep-
resentative of the minority class. This can increase overfitting and poor generalization.
Therefore, these instances are not considered during synthesis. This approach ensures
that the generated samples are more likely to aid in classification. While generating
samples near the decision boundary inevitably increases overlap, we limited the num-
ber of samples to reduce this effect and avoid overfitting.

For implementation, we first labeled all minority class samples according to the
aforementioned categories. Then, the SMOTE algorithm was applied. The process in-
volves randomly selecting a minority class sample from the training set. If the selected
sample is labeled as safe, it is excluded from data synthesis. For other categories, we
identify their k-nearest neighbors, typically using a k value of 5. A neighbor is ran-
domly chosen from these k neighbors (excluding those in the safe category) and used
to create a new sample through interpolation. This involves calculating the difference
between the feature vectors of the two samples, multiplying it by a random number be-
tween 0 and 1, and selecting a random point along this line to form the new synthetic
sample. The number of samples to be generated is controlled as a hyperparameter of
the SMOTE approach.

We considered two aspects during oversampling. First, we did not aim to balance
the dataset completely. Instead, we defined a parameter α to control the number of
minority class samples generated. In our study, we set α to 0.5, meaning we generated
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enough synthetic samples to reduce the IR by half. This is a tunable hyperparameter
for optimization. Second, since oversampling inevitably creates some noisy samples,
we applied a noise-filtering technique in the next stage to remove such samples from
the data.

4.3.2 Data Cleaning

Applying oversampling techniques increases overlap with the opposite class and gen-
erates noisy samples, which negatively affects prediction performance. To mitigate
this issue, we implemented a data-cleaning approach to eliminate noisy samples from
the resampled dataset. We chose the Neighborhood Cleaning Rule (NCL) algorithm
for this purpose. NCL identifies and removes noisy and ambiguous majority class
samples, offering more thorough data cleaning compared to methods like the ENN
algorithm or tomek-links. This also helps reduce overlap between the classes and de-
creases the imbalance ratio, though it does not completely balance the data. The NCL
algorithm is usually used independently as an undersampling method. However, as has
been demonstrated in Chapter 3, the performance from these types of approaches is not
satisfactory in higher imbalances. They are not enough to tackle the class imbalance
problem by themselves. Therefore, we utilize this approach as a part of our framework.

The NCL algorithm functions as follows: For each sample in the training set, its
k-nearest neighbors (typically k=3) are identified. The original sample is then clas-
sified based on these neighbors. If the original sample belongs to the majority class
and is misclassified by its neighbors, it is removed from the training set. Conversely,
if the original sample belongs to the minority class and is misclassified by its neigh-
bors, the majority class neighbors responsible for the misclassification are removed.
This process identifies and eliminates noisy majority-class samples while preserving
minority-class samples. The process is illustrated in Fig. 4.2.

This stage accomplishes three goals. First, the NCL approach clears the decision
boundary of noisy samples. Second, it reduces class overlap, which helps with predic-
tion accuracy. Third, it lowers the imbalance ratio, though the reduction is relatively

Majority Class Instance

Minority Class Instance 

Majority Class Instance

Minority Class Instance 

Figure 4.2: Majority class sample elimination using the NCL algorithm.
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small (around 10-20% on average). Consequently, in highly skewed datasets, the class
imbalance issue may persist. While reducing class overlap improves prediction, an im-
balanced dataset can still bias the results. The NCL algorithm alone cannot completely
avoid this bias, as evident from the lower performance measures reported in chapter 3
when it is applied independently.

4.3.3 Undersampling

A significant discrepancy in the number of samples between two classes negatively
impacts prediction performance, making it essential to achieve a relatively balanced
distribution. Although oversampling techniques were originally designed to balance
class distribution by generating the necessary minority-class samples, this can lead
to overfitting and other issues. To mitigate these problems, we only reduced the im-
balance ratio (IR) by 50% during oversampling. The subsequent data-cleaning stage
further reduces the IR to some extent, though the data may remain quite imbalanced.

To further lower the IR, we randomly removed some majority class samples from
the data. Removing too many samples can lead to a loss of information, which can
negatively affect performance. Given that the IR was already reduced in the previous
two stages, only a limited number of instances needed to be removed. We introduced
a hyperparameter, β, to control the number of samples removed in this process. In our
study, β was set to 0.2, indicating a 20% reduction in IR through this approach. This
value can be fine-tuned using grid search or similar methods. The aim of this step is
not to balance the dataset entirely but to further reduce the IR, minimizing information
loss, which is further addressed through bagging in the next stage. This step also
reduces overlapping to some extent as a secondary benefit.

These three stages collectively form our proposed sampling framework. By work-
ing together, this methodology addresses all data difficulty factors while minimizing
the shortcomings of individual techniques. Our proposed methodology is unique in its
architecture, being the first approach to tackle all these issues simultaneously. We en-
hance it further by incorporating the sampling technique within an ensemble learning
framework for improved generalization.

4.3.4 Ensemble learning

Ensemble learning is an ML approach that combines multiple learning algorithms to
achieve better predictive performance than any single algorithm alone. This involves
training a diverse set of learners on the same predictive task, allowing for greater varia-
tion in learning, better generalization, and lower variance. Standard ensemble methods
include bagging, boosting, and stacking. These techniques often outperform traditional
ML classifiers. However, creating an ensemble does not inherently solve the problem
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of imbalanced classification, as both the ensemble and the base learners remain vul-
nerable to skewed class distributions. To address this, sampling techniques can be
integrated into the ensemble learning framework by resampling the data used to train
the base learners.

In this study, we combine the proposed sampling method with the bagging ensem-
ble framework, specifically employing a customized bagging approach for imbalanced
scenarios. The boosting framework can also be adapted similarly. Bagging helps miti-
gate information loss through bootstrapping, where many bootstrap subsets are gener-
ated from the original data, each used to train a specific weak learner. In one subset,
certain samples might be missing or removed through undersampling, but in another
subset, those samples might still be present and used to train a different classifier. Thus,
using a large number (typically 100) of bootstrap subsets reduces the issue of informa-
tion loss.

In bagging, bootstrap samples are generated from the original data through random
sampling with replacement, producing multiple bootstrap samples that are potentially
different from the original dataset. However, if the data is skewed, the bootstrap sam-
ples would be even more skewed after bootstrapping, and some subsets might lack
minority-class samples entirely. To prevent this, we modify the original algorithm to
include all minority-class samples in each bootstrap subset. Majority-class samples are
then added with replacement to these subsets, ensuring that all bootstrap subsets have
a similar imbalance ratio but vary in their constituent data points. Each subset is then
independently resampled using the proposed sampling methodology. Consequently,
each base learner is trained on a different subset of the data, and the predictions of the
base learners are aggregated to obtain the final result. This approach helps the model
achieve better generalization and robust performance. In our study, decision trees are
used as the base learning algorithm, and the RF architecture is used to form the ensem-
ble.

The proposed ensemble method is termed as ’iBRF: improved Balanced Random
Forest Classifier’. This is a modified version of the original BRF classifier proposed
by Chen et al. [37]. The original BRF classifier uses the simple RUS algorithm for
sampling. However, as RUS removes too many samples to balance the data, it causes a
loss of information and poor performance. Integrating the proposed sampling method-
ology alleviates the problem and enhances the prediction performance. This proposed
iBRF algorithm far outperforms the original BRF classifier (performance measures are
provided in subsequent sections). The architecture of the proposed iBRF classifier is
presented in Fig. 4.3.
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Figure 4.3: Architecture of the proposed iBRF classifier.

4.4 Experimental Framework

To validate the proposed model’s preeminence, the algorithm has been tested on a
range of imbalanced datasets. The performance is compared with other state-of-the-art
techniques. Statistical significance tests have also been performed.

4.4.1 Datasets

The performance of the proposed approach was evaluated on 44 datasets. To assess the
method’s effectiveness across various imbalance scenarios, datasets with imbalance
ratios ranging from 2 to 129 were chosen. These datasets were sourced from various
repositories, including KEEL and UCI. Table 4.1 provides a summary of the datasets
used in the experiments, all of which are real-world datasets for binary classification.

4.4.2 Experimental Setup

A similar experimental setup to experiment I (as described in chapter 3) was followed.
For discussion related to the choice of performance measures or experimental setup,
refer to previous chapters. The outline of the entire framework is presented in Fig. 4.4.
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Table 4.1: Summary of the Datasets

Dataset Name No. of Samples No. of features No. of Samples in the Minority Class No. of Samples in the Majority Class Imbalance Ratio
ionosphere 351 33 126 225 1.79
Wisconsin 683 10 239 444 1.86
pima 768 9 268 500 1.87
breast_cancer_wisconsin 699 10 241 458 1.9
cirrhosis 418 19 113 305 2.7
vehicle2 846 19 218 628 2.88
vehicle1 846 19 217 629 2.9
vehicle3 846 19 212 634 2.99
transfusion 748 5 178 570 3.2
spect_heart 267 23 55 212 3.85
new-thyroid1 215 6 35 180 5.14
ecoli2 336 8 52 284 5.46
mi_lethal_2 1547 102 232 1315 5.67
glass6 214 10 29 185 6.38
yeast 1484 9 163 1321 8.1
yeast3 1484 9 163 1321 8.1
ecoli3 336 8 35 301 8.6
yeast-2_vs_4 514 9 51 463 9.08
yeast-0-2-5-6_vs_3-7-8-9 1004 9 99 905 9.14
Satimage 4435 37 415 4020 9.69
vowel 988 14 90 898 9.98
led7digit-0-2-4-5-6-7-8-9_vs_1 443 8 37 406 10.97
glass2 214 10 17 197 11.59
ecoli-0-1-4-7_vs_5-6 332 7 25 307 12.28
cervical 753 31 53 700 13.21
glass4 214 10 13 201 15.46
ecoli4 336 8 20 316 15.8
page-blocks-1-3_vs_4 472 11 28 444 15.86
abalone 731 9 42 689 16.4
yeast-1-4-5-8_vs_7 693 9 30 663 22.1
yeast_ME2 1483 9 51 1432 28.08
yeast4 1484 9 51 1433 28.1
yeast128 947 9 30 917 30.57
winequality-red-8_vs_6 656 12 18 638 35.44
ecoli_013vs26 281 8 7 274 39.14
abalone-17_vs_7-8-9-10 2338 9 58 2280 39.31
winequality-white-3_vs_7 900 12 20 880 44
winequality-red-8_vs_6-7 855 12 18 837 46.5
abalone-19_vs_10-11-12-13 1622 9 32 1590 49.69
winequality_white 1481 12 25 1456 58.24
winequality-red-3_vs_5 691 12 10 681 68.1
abalone_20 1916 8 26 1890 72.69
kddcup-land_vs_satan 1609 39 20 1589 79.45
abalone19 4174 9 32 4142 129.44

4.4.3 Statistical Analysis

The statistical significance of the difference in performance between the approaches
was determined using the Wilcoxon Signed Rank Test [82]. This is a non-parametric
statistical test used to compare two related samples to assess whether their population
mean ranks differ. It’s an alternative to the paired Student’s t-test when the data can-
not be assumed to be normally distributed. It assumes that data are paired and come
from the same population. Each pair is chosen randomly and independently. The null
hypothesis is that the median of the differences between paired observations is zero.
The significance level is considered to be 0.05 in this study. The p-values lower than
that indicate a statistically significant difference between the two methods. The goal of
statistical testing is to determine whether there is sufficient evidence to reject the null
hypothesis in favor of the alternative hypothesis. The Wilcoxon Signed Rank Test is a
robust tool for comparing related samples, especially when the normality assumption
is questionable. It provides a way to assess differences in median ranks, making it
valuable for a variety of experimental and observational studies.
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Figure 4.4: Outline of the experimental setup.

4.4.4 Performance Comparison

It is important to compare the performance of a method with other state-of-the-art
techniques to determine where the method stands. As such, the performance of our
proposed approach was compared with 28 other popular methods used for imbalanced
learning. The methods are chosen based on their popularity and recency. Some of
the best-performing SMOTE-variants as identified by Kovacs in their article [83] are
also included for comparison. The algorithms are implemented using the imblearn
library [84] and the smote-variants library [17] with default parameter settings.

The approaches used for performance comparison are listed below.
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• Oversampling

– Random Oversampling (ROS)

– Synthetic Minority Oversampling Technique (SMOTE) [14]

– Adaptive SMOTE (ADASYN) [16]

– Borderline SMOTE (BL-SMOTE) [18]

– Polynom-Fit-SMOTE [55]

– Learning Vector Quantization SMOTE (LVQ-SMOTE) [85]

– Geometric SMOTE (G-SMOTE) [25]

– SMOBD [41]

– LEE [54]

– SMOTE-IPF [23]

• Undersampling

– Random Undersampling (RUS)

– Tomek-Link

– Edited Nearest Neighbor (ENN)

– Condensed Nearest Neighbor (CNN) [30]

– Neighborhood Cleaning (NC) [49]

– Instance Hardness Threshold (IHT) [32]

• Hybrid Sampling

– SMOTE-ENN [33]

– SMOTE-Tomek [33]

– ROS+RUS

– Random Balance [34]

• Ensemble Methods

– Over-Bagging

– SMOTE-Bagging [58]

– Balanced-Bagging [86]

– Over-Boosting

– RUSBoost [60]
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– Easy Ensemble [38]

– Balanced Random Forest (BRF) [37]

• Cost-Sensitive Learning [5]

4.5 Results and Discussion

The performance measures obtained from the proposed approach, its comparison with
other sampling techniques, and the results from the statistical significance tests are
provided in this section. The average results are reported in Table 4.2 and 4.3 for the
SVM and RF classifiers, respectively. Detailed results on each individual dataset are
provided in supplementary files.

Table 4.2: Performance of different approaches using SVM as the base classifier (in percent-
age)

Methods G-MEAN MCC ROC F1-Score Sensitivity Specificity Accuracy

NO SAMPLING 42.997 37.515 66.952 38.739 35.969 97.935 92.702
ROS 75.267 48.191 79.458 50.831 73.452 85.464 84.877
SMOTE 74.787 48.21 78.961 50.9 71.581 86.341 85.595
ADASYN 74.377 46.9 78.955 49.744 73.096 84.814 84.539
BLSMOTE 72.352 48.669 78.217 51.956 68.737 87.698 87.11
POLYNYM-FIT-SMOTE 72.281 47.192 77.982 50.095 68.418 87.545 86.384
LVQ-SMOTE 73.544 46.673 78.328 49.782 70.102 86.553 85.605
G-SMOTE 74.099 48.397 78.811 51.141 70.958 86.665 85.82
SMOBD 75.587 49.145 79.455 51.517 72.83 86.081 85.203
LEE 68.061 49.27 76.37 52.527 60.961 91.78 89.997
SMOTE-IPF 73.887 47.994 78.766 50.753 70.889 86.643 85.677
RUS 76.475 44.836 79.008 47.616 80.304 77.712 78.038
TOMEK-LINK 45.302 38.617 67.867 40.786 38.83 96.904 92.582
ENN 51.249 41.666 70.596 44.589 47.377 93.815 91.629
NC 51.484 42.733 70.72 45.433 47.028 94.412 92.067
CNN 49.905 37.983 69.623 41.628 49.756 89.49 88.285
IHT 63.878 44.972 74.841 48.631 64.578 85.104 85.679
SMOTE-ENN 75.3 46.615 79.088 49.412 75.755 82.42 82.609
SMOTE-TOMEK 74.617 48.112 79.045 50.764 71.787 86.303 85.574
ROS + RUS 71.032 49.263 77.606 51.858 63.616 92.067 89.306
Random Balance 70.829 49.096 77.428 51.846 62.863 92.442 89.602
Proposed 79.515 49.748 81.837 52.579 81.03 82.642 82.936

4.5.1 Performance Analysis of the Proposed Unified Sampling Framework

As can be observed from the tables, for both SVM and RF classifiers, the proposed
approach outperforms all the other approaches in terms of all four composite metrics.
The table shows the average results on 44 imbalanced datasets. On average, there is
a significant improvement in performance from the proposed approach. In individual
scenarios also, the proposed approach usually outperforms the other approaches.
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Table 4.3: Performance of different approaches using RF as the base classifier (in percentage)

Methods G-MEAN MCC ROC F1-Score Sensitivity Specificity Accuracy

NO SAMPLING 51.47 44.04 69.41 45.24 41.68 97.14 92.89
ROS 57.662 46.37 71.726 49.019 47.932 95.521 92.271
SMOTE 63.459 47.268 74.005 51.065 54.138 93.873 91.201
ADASYN 62.836 46.433 73.716 50.294 53.856 93.577 91.025
BLSMOTE 60.228 45.999 72.622 49.725 50.748 94.496 91.671
POLYNYM-FIT-SMOTE 63.076 47.852 74.362 51.347 54.659 94.065 91.573
LVQ-SMOTE 68.313 49.47 76.301 52.681 59.553 93.049 90.537
G-SMOTE 60.436 46.959 72.922 50.128 51.082 94.761 91.791
SMOBD 66.296 48.231 75.16 51.905 57.352 92.967 90.517
LEE 58.109 47.284 72.592 49.918 49.532 95.651 92.528
SMOTE-IPF 63.581 47.35 74.123 51.118 54.426 93.82 91.124
RUS 77.373 44.474 79.532 47.318 79.701 79.362 79.448
TOMEK-LINK 53.391 45.032 70.14 46.793 43.981 96.298 92.647
ENN 58.818 46.961 72.699 49.8 52.247 93.15 91.418
NC 57.956 46.859 72.548 49.615 51.535 93.562 91.732
CNN 61.155 45.235 73.192 49.104 54.668 91.715 90.105
IHT 71.663 44.842 77.65 48.925 74.156 81.145 82.709
SMOTE-ENN 71.001 48.613 76.86 52.486 64.274 89.445 88.439
SMOTE-TOMEK 63.214 46.836 73.728 50.52 53.742 93.714 91.018
ROS + RUS 55.529 45.39 71.655 47.627 46.033 96.061 92.482
RANDOM BALANCE 62.959 48.759 74.548 52.045 52.746 95.13 91.98
Proposed 80.08 52.324 82.515 54.805 79.597 85.549 85.611

The proposed approach produced the highest MCC score of 52.314% and 49.748%
for the RF and SVM classifiers, respectively. While the sensitivity score is also the
highest from the proposed approach in the case of the SVM classifier, the RUS algo-
rithm produced the highest sensitivity (79.701%) for the RF classifier. The sensitivity
score from the proposed approach is also almost equal (79.597%). The classifiers
trained on the unsampled data produced the highest specificity scores which indicates
a clear bias from these traditional algorithms towards the majority class. Applying
sampling techniques reduces the specificity score but improves the sensitivity signifi-
cantly.

As for the F1-score, it is the harmonic mean of sensitivity and precision. Both of
these metrics are class-specific and related to the performance on the minority class
instances. As a result, a high F1 score is difficult to achieve as both of its constituents
heavily depend on the minority class. That is why the average F1 score achieved is
comparatively lower, similar to the MCC score. To further illustrate this, let’s look at
the following scenario.

• Total no. of instances = 100

• No. of minority class instances = 5

• No. of majority class instances = 95

• TP = 2
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Figure 4.5: Difference in average performance based on the IR value for the SVM Classifier.

• TN = 90

• FP = 5

• FN = 3

This is a typical scenario. The performance measures obtained from such a case
are as follows:

• Accuracy = 92% (misleading)

• Sensitivity = 40% (poor performance on the minority class)

• Specificity = 94.74% (indicating bias towards majority class)

• G-mean = 61,55%

• Precision = 28.57%

• F1 score = 33.33%

Overall, the proposed approach provides better performance in different imbal-
anced scenarios than other state-of-the-art sampling approaches. The variation in av-
erage performance across different sampling approaches, depending on the IR value,
is depicted in Fig. 4.5. Detailed discussion is provided in the following sections.
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4.5.2 Performance Comparison of the Proposed Approach with Undersampling
Techniques

As shown in the tables, the performance improvement from applying undersampling
techniques is minimal. Particularly in highly imbalanced datasets, these undersam-
pling algorithms performed poorly, as evidenced by the dataset-specific results in the
supplementary files. In several instances, both the sensitivity and G-mean scores are
0, indicating that the classifier remained biased towards the majority class despite the
sampling. This is undesirable and suggests that undersampling techniques are ineffec-
tive in highly imbalanced scenarios.

It is evident from the tables that the RUS algorithm exhibits an unusually high G-
mean score compared to other undersampling methods. This anomaly can be explained
by examining the sensitivity and specificity scores. RUS achieves a relatively high
sensitivity score at the expense of the lowest specificity score. As a class distribution-
based sampling method, RUS removes a significant number of majority class samples
to achieve balance. In cases of high imbalance, this results in the removal of too
many samples, causing the bias to shift from the majority class to the minority class.
Consequently, RUS yields a high sensitivity but low specificity score. While high
sensitivity is generally desirable, low specificity indicates a high rate of majority-class
misclassifications. This is not suitable for a reliable decision support system, where
balanced predictions for both classes are preferable. Other metrics, such as MCC and
ROC-AUC, reflect this issue.

The other five undersampling techniques included in the comparison are overlap-
based, aiming to reduce class overlap by strategically removing certain majority class
samples. However, these techniques do not balance the class distribution, resulting in
the data remaining skewed and the bias towards the majority class persisting. This is
reflected in the performance metrics of these methods, which show the poorest sensi-
tivity but the highest specificity among all sampling approaches. Consequently, their
G-mean and ROC-AUC scores are also the lowest.

Regarding MCC scores, IHT and NC are the top-performing undersampling ap-
proaches. The NC algorithm achieves an MCC score of 42.73% and a ROC-AUC of
0.7 for the SVM classifier. In contrast, our proposed sampling technique performed
significantly better, with an MCC score of 49.75% and a ROC-AUC score of 0.82.
Similarly, for the RF classifier, our proposed method outperformed the other under-
sampling approaches by a considerable margin.
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4.5.3 Performance Comparison of the Proposed Approach with Oversampling
Techniques

This study evaluated ten different oversampling techniques for comparison. These
techniques generally perform well, often surpassing the undersampling methods. Over-
sampling techniques are particularly effective in achieving good sensitivity, even in
cases of high imbalance where undersampling techniques tend to fail. This success
is attributed to the increased presence of minority-class instances, which is essential
for good performance. Among the oversampling techniques, LEE and LVQ-SMOTE
produced the highest MCC scores for the SVM and RF classifiers, respectively.

As seen in the tables, the proposed sampling approach significantly enhances per-
formance. For the RF classifier, SMOTE achieved an MCC score of 0.47 and a G-
mean score of 0.63, with other SMOTE variants producing similar results. In con-
trast, our proposed approach achieved an MCC score of 0.53 and a G-mean score of
0.8, markedly higher than the oversampling techniques. It also outperformed the best
SMOTE variants; for instance, LVQ-SMOTE achieved a G-mean score of 0.735 with
the SVM classifier, compared to 0.791 from our proposed approach, demonstrating the
framework’s ability to improve performance.

In terms of sensitivity, the proposed framework showed unmatched performance.
Undersampling techniques yielded the lowest sensitivity scores, while oversampling
techniques improved sensitivity by generating new synthetic samples, with scores
around 70% for the SVM classifier. ADASYN achieved the highest sensitivity of 73%
among these methods. Our proposed approach, however, achieved a sensitivity score
of 81%, significantly higher than the other techniques. This improvement is due to the
generation of more representative minority-class instances and the removal of noisy
and overlapping samples, which helped the classifier better distinguish instances from
different classes.

4.5.4 Performance Comparison of the Proposed Approach with Hybrid Sam-
pling Techniques

Hybridization of oversampling and undersampling techniques has not been extensively
explored. Previous studies typically aimed to balance class distribution using combi-
nations like ROS and RUS or SMOTE and RUS [34]. However, these approaches
do not address issues of overlapping or noisy samples. Simply combining two tech-
niques fails to resolve the core challenges of imbalanced learning, as evidenced by the
low G-mean, MCC, and ROC-AUC scores from the ROS+RUS and Random Balance
(SMOTE+RUS) hybrid methods. These algorithms only achieved G-mean scores of
55.52% and 62.96%, respectively, for the RF classifier, whereas our proposed algo-
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rithm significantly outperformed them with a G-mean score of 80.08
Other hybrid methods, such as SMOTE-Tomek and SMOTE-ENN [33], combine

SMOTE with Tomek-links and ENN undersampling methods. Tomek-link undersam-
pling removes majority-class instances from the identified Tomek-links, while ENN
removes borderline instances. The issue with these approaches is that they remove too
few samples, leaving the data quite skewed and necessitating the generation of many
samples by SMOTE. Additionally, they do not address the noisy and overlapping sam-
ples created by SMOTE, leading to other complications discussed in the discussion
section.

Among these hybrid methods, Random Balance achieved the highest MCC score of
0.48, and SMOTE-ENN reached the highest ROC-AUC score of 0.76 for the RF clas-
sifier. Although these hybrid approaches perform better than pure oversampling or un-
dersampling methods, our proposed method offers a significant improvement (around
4-5%) over these hybrid techniques. This indicates that our strategically designed sam-
pling framework is more effective at addressing the imbalanced classification problem.

4.5.5 Performance Comparison of the Proposed Approach with Cost-Sensitive
Learning

The average performance metrics from the CS approaches are summarized in Table
4.4, with detailed results for each dataset available in the supplementary files. The
results from both SVM and RF classifiers demonstrate that our proposed approach
consistently outperforms the cost-sensitive method. Although the CS-SVM shows bet-
ter performance compared to the CS-RF approach, our sampling framework achieves
significantly higher scores across various metrics, including G-mean, MCC, ROC-
AUC, F1-Score, and sensitivity. The RF classifier, in particular, is found to be less
responsive to the CS approach. The CS-RF delivers the highest specificity score but
the lowest sensitivity, indicating a strong bias towards the majority class. This can
be explained by the RF’s use of the bagging process to generate bootstrap subsets of
the data. When dealing with imbalanced data, the original bootstrapping process ex-
acerbates class imbalance within these subsets, sometimes resulting in the complete
absence of minority-class instances in highly imbalanced scenarios. To address this,
we proposed a modified version of the bagging process in this study, ensuring an ade-
quate presence of minority-class samples in all bootstrap subsets.
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Table 4.4: Performance comparison of the proposed approach with cost-sensitive learning (in
percentage)

G-mean MCC ROC-AUC F1-Score Sensitivity Specificity Accuracy
CS-SVM 75.58 47.68 79.21 50.39 73.61 84.81 84.34
Proposed Sampling (with SVM) 79.515 49.75 81.84 52.58 81.03 82.64 82.94
CS-RF 50.18 42.94 69.25 44.51 41.33 97.18 92.92
Proposed Sampling (with RF) 80.08 52.324 82.515 54.81 79.6 85.55 85.61

4.5.6 Performance of the Proposed iBRF algorithm and its Comparison With
Other Ensemble Techniques

The performance measures from the ensemble methods are provided in Table 4.5.
Among the ensemble techniques evaluated in this study, the Over-Boost method achieved
the highest MCC score at 0.47, while BRF attained the highest ROC-AUC score of
0.81. Our proposed hybrid ensemble method surpasses these techniques, achieving an
MCC score of 0.53 and a ROC-AUC score of 0.823. Additionally, the hybrid ensemble
outperforms our baseline sampling approach used for resampling the bootstrap subsets.
This is expected, as integrating the baseline sampling with the ensemble method en-
hances generalization and results in more robust performance.

Table 4.5: Performance comparison of the proposed iBRF algorithm with other ensemble
techniques (in percentage)

Methods MCC G-MEAN ROC Sensitivity Specificity Accuracy F1-Score

Over-Bagging 42.325 51.665 69.128 41.887 96.370 92.117 44.593
SMOTE-Bagging 44.463 56.839 71.123 46.885 95.361 91.757 47.720
Balanced-Bagging 45.823 75.662 78.169 71.092 85.245 83.909 49.237
Over-Boosting 47.590 69.911 76.193 62.021 90.366 88.606 51.650
RUSBoost 41.037 68.597 74.313 62.245 86.382 84.640 46.212
Easy Ensemble 44.325 78.674 80.425 82.604 78.246 78.687 47.105
BRF 47.031 79.244 81.044 81.776 80.312 80.514 49.095
iBRF (proposed) 53.042 79.923 82.260 78.931 85.589 85.880 55.002

4.5.7 Statistical Significance Test

The results from the Wilcoxon signed rank tests are presented in Table 4.6. As shown
in Table 4.6, the performance improvements in terms of G-mean, MCC, and ROC-
AUC scores achieved by our proposed approach are statistically significant compared
to all other methods. For other metrics, the performance improvements are not as
significant in only a few instances. A similar trend is noted for the SVM classifier, with
detailed Wilcoxon test results provided in the supplementary files. We also conducted
a statistical significance test for our proposed hybrid ensemble method against other
ensemble techniques, with p-values reported in Table 4.7. These results demonstrate
that the performance differences between our proposed method and other ensemble
methods are statistically significant for almost all metrics.
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Table 4.6: p-values of the Wilcoxon Signed Rank Tests for the proposed algorithm compared
to other sampling techniques (RF as the base classifier)

Methods G-MEAN MCC ROC F1-Score Sensitivity Specificity Accuracy

NO SAMPLING 1.21E-10 5.00E-07 1.14E-13 7.51E-10 1.13E-13 1.12E-08 2.31E-10
ROS 8.62E-10 3.33E-06 3.75E-12 8.23E-07 1.12E-08 1.48E-08 7.50E-10
SMOTE 7.31E-09 5.41E-05 4.21E-11 0.002 1.64E-08 1.12E-08 6.09E-11
ADASYN 3.261E-07 1.24E-05 5.52E-08 9.61E-05 3.85E-08 4.07E-08 8.26E-08
BLSMOTE 9.88E-10 3.58E-06 4.88E-12 1.65E-05 1.654E-08 1.12E-08 7.51E-10
POLYNYM-FIT-SMOTE 4.57E-09 1.54E-05 3.75E-12 0.0003 1.13E-13 1.12E-08 1.97E-10
LVQ-SMOTE 4.05E-09 6.47E-05 1.55E-11 0.0013 8.38E-08 1.13E-06 1.07E-05
G-SMOTE 2.80E-09 2.13E-05 3.49E-11 8.66E-05 1.64E-08 1.59E-08 1.91E-09
SMOBD 1.28E-08 1.03E-05 2.87E-11 0.0008 1.38E-08 1.12E-08 1.02E-10
LEE 1.03E-08 0.0001 3.65E-10 9.7E-05 1.12E-08 1.29E-08 6.52E-10
SMOTE-IPF 5.79E-09 9.02E-06 2.78E-08 0.0002 1.13E-13 1.12E-08 1.02E-10
RUS 5.15E-06 1.59E-12 6.51E-09 1.59E-12 0.81 2.09E-07 1.82E-07
TOMEK-LINK 2.31E-10 2.28E-05 7.95E-13 1.59E-07 1.13E-13 1.12E-08 2.70E-10
ENN 4.05E-09 0.00028 2.70E-10 0.0004 2.27E-13 1.15E-07 9.06E-08
NC 4.05E-09 0.0002 9.44E-08 5.41E-05 1.38E-08 3.63E-08 9.88E-10
CNN 1.47E-09 1.05E-06 1.59E-12 2.47E-06 1.02E-07 8.42E-06 7.72E-05
IHT 2.73E-07 1.97E-10 1.44E-08 6.15E-08 0.766 0.0098 0.0164
SMOTE-ENN 5.04E-08 1.64E-05 1.29E-09 0.0017 5.24E-08 0.0001 0.016
SMOTE-TOMEK 8.62E-10 9.66E-06 1.59E-12 0.0002 1.12E-08 1.12E-08 2.31E-10
ROS + RUS 3.65E-10 1.56E-06 2.80E-09 1.45E-07 1.14E-13 1.49E-08 2.18E-09
RANDOM BALANCE 8.62E-10 0.0013 9.20E-09 0.012 1.14E-13 1.65E-08 1.43E-10

Table 4.7: p-values of the Wilcoxon Signed Rank Tests for the proposed ensemble algorithm
compared to other ensemble techniques

Methods G-MEAN MCC ROC F1-Score Sensitivity Specificity Accuracy

OVER-BAGGING 3.49E-11 2.27E-13 2.27E-13 1.14E-13 1.39E-08 5.04E-08 1.43E-10
SMOTE-BAGGING 7.51E-10 2.27E-13 2.27E-13 1.14E-13 1.59E-08 2.46E-08 7.48E-08
BALANCED-BAGGING 1.59E-12 8.26E-08 2.08E-06 2.85E-04 7.08E-01 2.73E-02 2.11E-08
OVER-BOOSTING 2.87E-06 8.66E-11 1.48E-09 4.50E-08 7.38E-06 1.49E-03 2.61E-03
RUSBOOST 2.16E-12 1.25E-11 1.98E-10 5.45E-08 3.65E-01 9.33E-02 2.70E-10
EASY-ENSEMBLE 1.56E-11 1.79E-04 3.21E-03 7.14E-02 1.20E-07 1.43E-10 1.00E-11
BRF 1.92E-11 1.02E-02 7.11E-02 1.08E-01 1.63E-05 5.15E-09 6.09E-11

4.6 Comparative Advantages of the Proposed Method Over Alter-
native Approaches

A novel data resampling methodology and its ensemble counterpart have been pro-
posed in this study. The algorithms are designed in such a way that they can overcome
the data difficulty factors properly while simultaneously alleviating the limitations of
the traditional sampling approaches.

To mitigate the issues caused by typical oversampling techniques, we propose a re-
fined version of the SMOTE approach that prioritizes the quality of synthetic samples.
These samples are generated near the decision boundary to better support decision-
making. The samples that are far away from the decision boundary (safe zones) are
ignored while generating instances. Samples that are very much inside the opposite
class (noisy samples) are also overlooked and not considered for sample generation.
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This ensures better representative samples and the quantity of generated samples is
kept moderate to reduce overlapping.

Following this, a noise-removal technique is employed to eliminate noisy, over-
lapping majority-class samples from the oversampled dataset. The synthetic samples
are carefully generated but this does increase overlapping with the majority-class in-
stances. This noise-removal stage clears such overlapping regions to support classifiers
in distinguishing the opposite class instances. This two-pronged approach addresses
the common problems associated with oversampling. Subsequently, a random selec-
tion of majority class samples is removed to lower the IR and further decrease over-
lapping.

Together, these three stages achieve a balanced dataset while minimizing overlap-
ping and noisy samples. This cohesive strategy ensures high-quality resampled data,
allowing the ML model to effectively distinguish between different classes. Addition-
ally, by balancing both undersampling and oversampling, the overall size of the data
remains relatively unchanged. This proposed method is straightforward and computa-
tionally efficient, making it suitable for large datasets.

Although this hybrid sampling method yields improved results, we enhance it fur-
ther by integrating it with the bagging framework to achieve better generalization. The
bagging process also mitigates the effects of information loss. Overall, these combined
approaches outperform other state-of-the-art sampling techniques. By adopting a uni-
fied approach, our proposed algorithm effectively addresses both class imbalance and
class overlapping issues, leading to enhanced prediction performance.

An overall performance comparison of the proposed approaches with alternative
approaches is illustrated in Fig. 4.6 and Fig. 4.7.

4.7 Limitations of the Proposed Approach

The proposed algorithm is designed and tested only in binary classification scenarios.
However, it is equally applicable to multiclass-imbalanced scenarios. Experiments for
such cases have not been conducted and therefore, not included in this manuscript.

When dealing with heavily imbalanced data with very few minority-class instances,
SMOTE struggles to create meaningful samples. Consequently, in these situations,
performance improvements may be minimal due to the insufficient number of repre-
sentative samples in the data. Given that ML algorithms are highly data-dependent,
overcoming this representation bottleneck poses a significant challenge.

To reduce overlapping, the NCL algorithm is utilized here. The approach has its
limitations such as a limited number of samples being removed by the algorithm. The
noisy samples that are generated by the application of SMOTE need to be more metic-
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Figure 4.6: Performance comparison of the proposed approach with alternative approaches.

ulously identified and eliminated. This requires a more sophisticated methodology for
removal.

4.8 Conclusion

In real-world datasets, it is common for one class to have significantly more samples
than others. This imbalance causes models to favor the majority class, resulting in less
accurate predictions for minority classes. Resampling the data during preprocessing is
a standard method to improve performance. Numerous sampling techniques have been
proposed to address this issue. However, certain intrinsic data characteristics can make
the learning task challenging, and existing sampling approaches have limitations that
affect their performance.

In this study, we introduce a novel sampling framework and its ensemble counter-
part that can address these issues and enhance performance. Our methodology aims
to reduce class overlapping, increase the presence of minority class samples in critical
regions, remove noisy instances, and balance the class distribution. By integrating it
with the bagging ensemble method, the model achieves better generalization.

We compared our approach with other benchmark techniques used in imbalanced
learning, and our method consistently outperformed all others in terms of MCC, ROC-
AUC, G-mean, and F1-score. It provides generalized performance across a wide range
of imbalanced scenarios. Unlike some sampling techniques that perform well only in
small to moderate imbalances, our approach excels even in highly imbalanced cases.
This highlights the superiority of our proposed technique and its potential as an effec-
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Figure 4.7: Performance comparison of the proposed ensemble approach with alternative
approaches.

tive sampling method for imbalanced classification tasks.
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Chapter 5

iCost: A Novel Instance Complexity Based Cost-Sensitive
Learning Framework

Cost-sensitive learning is a different approach than sampling that can be used in im-
balanced classification tasks. Here, the classifiers are weighted to address the class
imbalance scenario. Minority-class misclassifications are highly penalized to shift the
bias from the majority class. In the conventional approach, all minority-class instances
are treated uniformly and assigned the same penalty value. This can have some unusual
effects and overfit the data. In this thesis, a different CSL method is proposed where
instances are weighted depending on their complexity level. This new methodology is
described in this chapter.

5.1 Overview

In the algorithmic-level approach, the original classification algorithm is adapted to
the imbalanced domain by modifying the cost function to directly address the class
imbalance. This involves assigning higher misclassification costs to minority-class in-
stances, making the algorithm more sensitive to errors involving those instances. Dur-
ing training, the model focuses on minimizing the overall misclassification cost. By
assigning greater weight to misclassifications of the minority class, the bias is shifted
away from the majority class, thus making the algorithm cost-sensitive (CS).

Not all minority-class instances present the same level of difficulty. Samples closer
to the decision boundary are more likely to be misclassified than those farther away.
Penalizing all the instances with the same penalty factor can deform the decision
boundary creating an unusual bias towards the minority class. The model then fails to
generalize well on the test data, leading to poor performance. To avoid such a scenario,
more difficult-to-learn samples should be penalized more heavily. Previous literature
has not considered this instance-level difficulty characteristic. Our study addresses this
issue.
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Our proposed algorithm addresses this issue by first categorizing all minority-class
sample points based on their difficulty levels. We use a neighborhood search algorithm
to grade the samples, assessing them by the number of neighboring samples from the
opposite class. Higher misclassification costs are assigned to samples in overlapping
regions. This prioritizes minority-class samples in these regions over majority-class
samples, improving the identification of hard-to-learn instances. Conversely, samples
in safe zones, surrounded by samples of the same class, are given marginal weights,
reducing their impact. The appropriate penalty value can be determined through grid
search, evolutionary techniques, or similar methods. This approach applies asymmetric
costs to different minority-class instances based on their complexity, ensuring a more
appropriate weight distribution among the minority-class samples.

5.2 Related Works

Over the years, various techniques have been proposed to address imbalanced data
[13]. However, only a few of them consider data-intrinsic characteristics [87]. The
idea is mostly implemented in data resampling techniques and has not been considered
in CSL. However, CSL is very popular and widely applied in tackling class imbalanced
scenarios [88, 89]. Different variations of the CS framework have been proposed. A
comprehensive review of various CS methods is provided in this recent article [65]. A
few of them are discussed below.

Gan et al. introduced a sample distribution probability-based cost-sensitive (CS)
framework in their work [90]. Roychoudhuri et al. adapted the CS algorithm for time-
series classification [91]. Zhou et al. extended the CS framework to handle multiclass
imbalanced scenarios [92]. Other variations of CS approaches include MetaCost [93],
a meta-learning algorithm that transforms any classifier into a CS classifier. The con-
cept of example-dependent cost has also been explored in previous literature [94, 95].
For instance, in credit scoring, a borrower’s credit risk is assessed based on various
factors such as their credit history and financial behaviors. These factors should be
considered when weighing instances for predictive modeling [96]. However, these ap-
proaches tend to be application-specific and do not generalize well to other datasets.
Notably, none of these CS approaches take into account instance-difficulty-based char-
acteristics.

5.3 Proposed Methodology

In this section, the proposed methodology is described in detail. The architecture as
well as the algorithm is also depicted here.
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Figure 5.1: Categorization of Minority-class instances.

5.3.1 Instance Complexity

To quantify instance complexity, the K-nearest neighbors (K=5) for each minority class
sample are first identified. The Euclidean distance is employed to calculate the nearest
neighbors. Subsequently, each minority class instance is categorized as follows:

• Pure: No neighboring samples belong to the majority class.

• Safe: One or two neighboring samples belong to the majority class.

• Border: More than two neighboring samples belong to the majority class.

This categorization is depicted in Fig. 5.1. ’Pure’ samples are completely sur-
rounded by instances of their own class, making them easy to classify and typically
located far from the decision boundary. Therefore, a relatively low misclassification
cost is sufficient to identify these samples correctly. Assigning a higher weight could
worsen the situation, leading to more misclassifications of majority class instances.

’Safe’ samples have one or two neighboring instances from the opposite class and
need to be handled with care due to the risk of misclassification. Too small a weight
may not be adequate, while too large a weight could cause the opposite problem.

’Border’ samples are surrounded by majority class instances and would be mis-
classified by the K-nearest neighbor classification rule. Hence, these samples require
a higher weight to prioritize them over the neighboring majority-class samples.

There are alternative methods for categorizing minority-class instances. One such
method, proposed by Napierala et al. [81], classifies samples into four categories: safe,
borderline, rare, and outliers. This approach is incorporated into our framework by
assigning four distinct penalties. We offer users greater flexibility through a general
categorization formula. This formula is based on the number of majority-class samples
surrounding a minority-class instance. We grade each minority-class sample from g0
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to g5, corresponding to having 0 to 5 neighboring majority-class samples, respectively.
Users can then assign different weights to each type of minority-class sample according
to its grade.

5.3.2 Implementation

The proposed approach is implemented using the Python programming language. The
theoretical framework behind CS classifiers like CS-SVM has been extensively dis-
cussed in prior literature [97], so we will not reiterate it here. The code is developed
inheriting from different classifiers implementation of the sklearn library. It is fully
compatible with the sklearn framework.

In our implementation, we assign distinct weights to different categories of sam-
ples according to their difficulty level. We used a grid-search technique to identify the
optimal costs for each category, which varied between datasets. Based on experiments
with 66 datasets, we set default values for each category to allow for immediate imple-
mentation. These default settings also notably improve performance.

Specifically, the default penalty for border samples is set to the imbalance ratio
(IR) of the dataset. For safe samples, we use half of this value. For the ’pure’ category,
we select a cost factor of 1.2, which is almost the same as the misclassification cost for
majority class samples. Using various search algorithms to find more suitable weights
for individual datasets can further enhance prediction performance.

The implementation code is available in the following repository: iCost-GitHub-
repository.

5.3.3 Algorithm

In this section, the framework of the algorithm is laid out in detail.

Algorithm: Instance complexity-based Cost-sensitive learning (iCost)

Inputs

• Data: Input dataset (Pandas DataFrame)

• Classifier: In this thesis, three classifier implementations have been tested. These
are -

– SVM

– LR

– DT
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The default is set to the ’SVM’ classifier. The algorithm inherits from Sklearn’s
SVC, LogisticRegression, and DecisionTreeClassifier implementations, respec-
tively.

• Type: This refers to the type of minority-class categorization to be followed.

– org: refers to the original implementation of the CS classifier.

– ins: refers to the instance categorization criteria proposed in this thesis
(default).

– nap: refers to the instance categorization criteria proposed by Napier-
ala et al. [81].

– gen: refers to the general categorization mentioned in the previous
section.

• K: The number of neighbors to be considered for categorization of the minority-
class instances (default = 5).

• Cost-factor: The misclassification cost to be assigned. It can be an integer or a
list/dictionary. This input parameter is related to the ’type’ parameter. For type
= ’org’, the cost-factor value must be an integer. For other types, the cost-factor
value can be both an integer and a list/dictionary. For all cases, the default value
is set as the IR of the dataset.

Output

Instance-level weighted classifier fitted on the given input training data.

Procedure

• If ‘type = ’org’, the algorithm assigns a weight equal to the cost factor to all
minority-class instances without any further considerations. This represents the
original cost-sensitive implementation of the algorithms. When the cost factor
value is set to 1, the algorithm functions as a standard error-driven classifier.

• When type = ’ins’ or ’nap’, the algorithm categorizes minority-class instances
into three or four categories, respectively. For ‘gen‘, minority-class instances are
categorized into k + 1 categories.

• When ‘type = ’ins’‘, the user has the option to provide either an integer or an
array/dictionary with three elements as the input values for the cost factor. If an
integer is provided, it is assigned as the penalty for ’border’ samples. The penalty
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for ’safe’ samples is set to half of the integer value, and a fixed misclassification
cost of 1.2 is assigned to ’pure’ samples.

If an array is used as input, the values are directly assigned to ’border’, ’safe’,
and ’pure’ samples in that specific order. Alternatively, when a dictionary is
provided, key-value pairs can be used to directly specify the cost values for each
category.

• Similarly, for ‘type = ’nap’‘, if the input value for the cost factor is an integer,
the weights are assigned to minority class samples as follows: ’outlier’ samples
receive the full cost factor, ’rare’ samples receive 0.75 times the cost factor,
’border’ samples receive 0.5 times the cost factor, and ’safe’ samples receive
0.25 times the cost factor. Alternatively, the user can directly assign weights
using an array or dictionary with four elements, specifying values for ’outlier’,
’rare’, ’border’, and ’safe’ samples accordingly.

• For ’gen’, the user can assign weights using an array of k+1 elements. In the case
of integer input or default scenario (weight=IR), the weight is equally divided
between the samples from 1 to IR proportionally based on their grade.

• The optimal values for misclassification costs vary depending on the dataset.
By default, a value equivalent to the imbalance ratio (IR) of the dataset is set,
akin to the approach used in the sklearn library. Assigning costs to different
categories of samples, as described earlier, results in a notable improvement
in performance. However, further optimization can be achieved by employing
various search algorithms, as suggested in prior research [98].

• Assigning a weight lower than 1 to any minority class instance can lead to re-
duced sensitivity in imbalanced classification tasks, as any misclassifications of
majority class samples are assigned a weight of 1. Given the greater impor-
tance of correctly classifying minority-class samples, a conditional statement is
employed to ensure that the minimum weight assigned to any minority-class in-
stance does not fall below 1. This approach helps maintain adequate sensitivity
for minority class predictions in imbalanced datasets.

Example

• iCost(data, classifier = ’LR’, type = ’gen’, cost-factor = [5, 5, 5, 10, 10, 10])

This will apply an instance complexity-based cost-sensitive Logistic Regression
(LR) classifier on the given data. Here, g0, g1, and g2 graded minority-class
samples (’pure’ and ’safe’ categories) are weighted by a factor of 5. The remain-
ing samples (’border’ category) are weighted by a factor of 10.
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• iCost(data, classifier = ’SVM’, type = ’ins’, cost-factor = 20)

This will employ the iCost algorithm with the SVM classifier. A penalty of 20
will be set for the border samples while a penalty of 10 will be set for the safe
ones. The pure samples will be penalized by a factor of 1.2

5.4 Experimental Framework

5.4.1 Data

The proposed algorithm’s performance was assessed across 66 imbalanced datasets,
each exhibiting varying degrees of class imbalance, to validate the applicability of the
approach. These datasets were sourced from the KEEL and UCI data repositories [76].
All datasets are publicly accessible and contain no missing data entries. Table 5.1
presents a summary of these datasets.

Table 5.1: Summary of the datasets

Dataset Name # Samples # Features Imbalance Ratio Dataset Name # Samples # Features Imbalance Ratio
glass1 213 10 1.8 glass-0-6_vs_5 108 10 11
wisconsin 683 10 1.86 glass-0-1-4-6_vs_2 205 10 11.06
pima 768 9 1.87 glass2 214 10 11.59
glass0 213 10 2.09 ecoli-0-1-4-7_vs_5-6 332 7 12.28
yeast1 1483 9 2.46 cleveland-0_vs_4 177 14 12.62
vehicle2 846 19 2.88 shuttle-c0-vs-c4 1829 10 13.87
vehicle1 846 19 2.9 yeast-1_vs_7 459 8 14.3
vehicle3 846 19 2.99 glass4 214 10 15.46
vehicle0 845 19 3.27 ecoli4 336 8 15.8
new-thyroid1 215 6 5.14 page-blocks-1-3_vs_4 472 11 15.86
ecoli2 336 8 5.46 abalone 731 9 16.4
glass6 214 10 6.38 glass-0-1-6_vs_5 184 10 19.44
yeast3 1484 9 8.1 yeast-1-4-5-8_vs_7 693 9 22.1
yeast 1484 9 8.1 yeast4 1484 9 28.1
ecoli3 336 8 8.6 yeast128 947 9 30.57
page-blocks0 5472 11 8.79 yeast5 1484 9 32.73
ecoli-0-3-4_vs_5 200 8 9 winequality-red-8_vs_6 656 12 35.44
yeast-2_vs_4 514 9 9.08 ecoli_013vs26 281 8 39.14
ecoli-0-6-7_vs_3-5 222 8 9.09 abalone-17_vs_7-8-9-10 2338 9 39.31
ecoli-0-2-3-4_vs_5 202 8 9.1 yeast6 1483 9 41.37
yeast-0-3-5-9_vs_7-8 506 9 9.12 winequality-white-3_vs_7 900 12 44
glass-0-1-5_vs_2 172 10 9.12 winequality-red-8_vs_6-7 855 12 46.5
yeast-0-2-5-7-9_vs_3-6-8 1004 9 9.14 kddcup-land_vs_portsweep 1060 39 49.48
yeast-0-2-5-6_vs_3-7-8-9 1004 9 9.14 abalone-19_vs_10-11-12-13 1622 9 49.69
ecoli-0-4-6_vs_5 203 7 9.15 winequality_white 1481 12 58.24
ecoli-0-2-6-7_vs_3-5 224 8 9.18 poker-8-9_vs_6 1484 11 58.36
glass-0-4_vs_5 92 10 9.22 winequality-red-3_vs_5 691 12 68.1
ecoli-0-3-4-6_vs_5 205 8 9.25 abalone_20 1916 8 72.69
ecoli-0-3-4-7_vs_5-6 257 8 9.28 kddcup-land_vs_satan 1609 39 79.45
vowel 988 14 9.98 poker-8-9_vs_5 2074 11 81.96
ecoli-0-6-7_vs_5 220 7 10 poker_86 1477 11 85.88
glass-0-1-6_vs_2 192 10 10.29 kddr_rookkit 2225 42 100.14
ecoli-0-1-4-7_vs_2-3-5-6 336 8 10.59

5.4.2 Setup

The experimental setup followed for this experiment is similar to the previous one.
A repeated stratified K-fold cross-validation strategy with 5 folds and 10 repeats was
adopted for this experiment to ensure more robust measurements. 3 different classifiers
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(SVM, LR, and DT) were utilized. The default settings of the sklearn library were used
to implement these algorithms.

For the iCost algorithm, grid-search was applied exclusively to tune the ’cost-
factor’ parameter. We conducted experiments using both type=’org’ for traditional
CS classifiers and type=’ins’ for our modified approach. Details of the parameter con-
figuration for the grid-search process are outlined in Table 5.2. The MCC score served
as the primary criterion for evaluating performance. The choice of performance mea-
sures has been discussed in previous chapters (Chapter 2).

Table 5.2: Parameter settings for the grid-search implementation of the proposed iCost algo-
rithm

Parameter Value Cost-factor parameter setting
Type org 0.8*IR, IR, 1.2*IR
Type ins ’pure’ : [1, 0.2*IR]

’safe’: [0.25*IR, 0.35*IR, 0.5*IR]
’border’: [0.75*IR, 0.9*IR, IR, 1.1*IR, 1.25*IR]

5.4.3 Performance Comparison

To evaluate the differences, the performance of the proposed approach was compared
with that of the standard CSL technique. Additionally, the results were compared with
those of popular sampling techniques commonly used in imbalanced learning. The
sampling techniques were implemented using the imblearn library with default param-
eter settings. The performance measures from these various approaches are reported
in the following section.

5.5 Results and Discussion

This section contains the results obtained during the experiment. The performance of
three different classifiers was measured on 66 imbalanced datasets using eight different
metrics. Due to space constraints, not all these measures for individual datasets can be
included here; they are provided in separate supplementary files. The average of the
results on all the datasets are provided in Table 5.3, Table 5.4, and Table 5.5 for the
LR, SVM, and DT classifiers, respectively.

5.5.1 Performance comparison of the proposed approach with the standard CS
approach

Standard classifiers perform poorly in imbalanced data. Making them cost-sensitive
improves the prediction performance significantly. This can be observed from Fig.
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Table 5.3: Performance measures obtained from different approaches for the LR classifier

Metrics LR SMOTE ADASYN BL-SMOTE ROS RUS ENN NC SMOTE_Tomek CS-LR iCost (Proposed)
Sensitivity 18.34 79.88 80.81 78.37 80.02 80.19 25.83 25.91 79.98 80.21 78.43
Specificity 99.16 80.46 78.16 80.77 79.70 75.16 96.40 96.30 80.44 83.26 85.47
Precision 33.64 46.70 42.75 45.56 45.46 41.65 36.05 37.31 46.69 41.87 47.13
ROC-AUC 58.75 80.17 79.48 79.57 79.86 77.67 61.11 61.10 80.21 81.73 81.95
G-mean 24.79 77.62 76.57 76.11 76.87 74.48 30.79 30.95 77.63 80.29 81.03
MCC 21.72 49.50 46.80 48.72 48.58 44.18 25.96 26.21 49.53 48.2 51.56
F1-score 21.81 52.47 49.94 51.90 51.53 47.50 27.83 28.10 52.46 50.57 53.96

Table 5.4: Performance measures obtained from different approaches for the SVM classifier

Metrics SVM SMOTE ADASYN BL_SMOTE ROS RUS ENN NC SMOTE_Tomek CS-SVM iCost(Proposed)
Sensitivity 41.21 77.28 78.64 74.10 77.19 83.37 51.32 51.64 77.30 78.12 76.53
Specificity 97.80 86.50 84.33 87.31 85.19 76.62 94.26 94.54 86.50 89.2 91.41
Precision 53.39 55.64 52.47 56.43 54.41 44.96 53.84 55.45 55.64 55.27 58.32
G-mean 48.47 78.45 78.03 76.05 77.70 76.43 54.78 55.25 78.46 81.05 82.8
MCC 42.99 56.13 54.05 55.59 54.80 48.15 47.24 48.23 56.14 57.99 60.02
ROC-AUC 69.51 81.89 81.49 80.70 81.19 79.99 72.79 73.09 81.90 83.66 83.97
F1-Score 43.98 58.07 56.26 57.95 57.03 50.57 49.03 49.86 58.07 60.03 61.97

Table 5.5: Performance measures obtained from different approaches for the DT classifier

Metrics DT SMOTE ADASYN BL_SMOTE ROS RUS ENN NC SMOTE_Tomek CS-DT iCost(Proposed)
Sensitivity 55.46 62.18 63.38 60.07 53.73 81.81 61.39 62.48 62.20 54.69 56.1
Specificity 93.61 92.02 91.69 92.59 94.50 74.48 90.44 90.62 92.00 96 96.1
Precision 53.60 51.95 52.15 53.05 55.00 36.37 50.31 51.54 51.78 57.38 58.36
G-mean 65.34 70.53 70.80 68.46 63.22 76.29 68.58 68.71 70.47 65.14 69.91
MCC 48.32 50.04 50.49 49.83 48.29 41.07 48.24 49.57 49.92 51.39 52.73
ROC-AUC 74.54 77.10 77.53 76.33 74.12 78.14 75.92 76.55 77.10 75.05 76.1
F1-Score 51.87 53.45 53.71 53.21 51.19 44.09 52.16 53.12 53.34 54.68 55.9

5.2. Fig. 5.2 illustrates the average G-mean scores obtained across 66 datasets. Of
the classifiers tested, CS-SVM achieved the highest G-mean score. The DT classifier
was observed to be less responsive to CS approaches. The greatest improvement in
performance was observed with the LR classifier.

As compared to traditional CS approaches, in this thesis, a modified CS frame-
work has been proposed. In this approach, different misclassification costs are as-
signed to minority-class instances based on their difficulty level. Samples near the
decision boundary receive higher penalties compared to those that are farther away
or surrounded by instances of the same class. This strategy prevents safe samples
from overshadowing other majority-class instances and introducing unwarranted bias.
Consequently, our proposed method offers a more plausible cost-sensitive learning
framework by weighting instances according to their complexity, rather than applying
a uniform approach. This modification significantly enhances performance.

The changes in the MCC score resulting from the proposed algorithm compared
to the traditional CS approach are shown in Fig. 5.3, Fig. 5.4, and Fig. 5.5 for the
LR, SVM, and DT classifiers, respectively. As observed in Fig. 5.3, a significant im-
provement is evident in most datasets for the LR classifier. A few datasets showed
no change in performance, and only one dataset experienced a slight decrease in per-
formance. For the SVM classifier, performance improved in most datasets, although
the increase was smaller than that seen with the LR classifier. In several datasets, per-
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Figure 5.2: Performance comparison among standard and CS approaches.

formance remained unchanged, primarily in highly imbalanced cases (the datasets are
sorted by IR in ascending order). In these cases, the limited number of minority class
samples are typically surrounded by majority class instances, resulting in very few
pure and safe samples. Consequently, almost all samples are border samples, which
are weighted equally, causing the algorithm to behave similarly to the standard CS
approach. For the DT classifier, performance declined in some datasets, though the
decrease was generally minimal. In most other datasets, there was a noticeable im-
provement in performance.

Overall, the most significant improvement was observed with the LR classifier,
averaging a 3.3% increase per dataset. For the other two classifiers, the average im-
provement was around 2%. MCC is a highly reliable performance metric, and an
improvement in MCC indicates that our proposed method effectively reduces misclas-
sifications. Fig. 5.6 illustrates the other performance measures (averages) obtained
across 66 imbalanced datasets for the LR classifier. As shown, the proposed algo-
rithm enhances performance across almost all measures compared to the traditional
CS approach, with only a marginal drop in sensitivity. The typically small number of
minority class samples in the datasets means that a few misclassifications can signif-
icantly impact the sensitivity score. However, the proposed algorithm outperformed
the traditional CS approach in all four composite metrics. Similar improvements are
evident for the SVM classifier as well (Table 5.4).
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Figure 5.3: Changes in MCC score from the iCost algorithm as compared to traditional CS
approach for the LR classifier on 66 datasets.

Figure 5.4: Changes in MCC score from the iCost algorithm as compared to traditional CS
approach for the SVM classifier on 66 datasets.

Figure 5.5: Change in MCC score from the iCost algorithm as compared to traditional CS
approach for the DT classifier on 66 datasets.
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Figure 5.6: Average performance measures on 66 datasets for the LR classifier.

5.5.2 Performance comparison of the proposed algorithm with other sampling
techniques

The performance was also compared with several popular sampling approaches. Data
resampling techniques, which take a different approach to addressing class imbalance,
have been widely used in the imbalanced domain. As shown in the tables, better pre-
diction performance was achieved by the proposed framework compared to all other
approaches in terms of precision, ROC-AUC, G-mean, MCC, and F1-score. When data
was resampled using SMOTE, the most popular sampling technique, G-mean scores of
77.62% and 78.45% were obtained for the LR and SVM classifiers, respectively. This
well-established method was significantly outperformed by the proposed approach,
which produced G-mean scores of 81.03% and 82.8%, respectively. Significant im-
provements in performance were also observed compared to other approaches.

5.6 Limitations and Future Work

This study focused exclusively on binary imbalanced classification scenarios, but the
concept has the potential for extension to multiclass scenarios, which we intend to
explore in future research. While our study involved three different classifiers, the pro-
posed algorithm is applicable to other classification algorithms like Random Forest or
XGBoost. The default values for our approach are set empirically, necessitating further
research to understand how different factors affecting data difficulty relate to the cost-
factor values. Instance complexity was assessed based on nearest neighbors, although
other data complexity measures such as local sets [3] could also be considered, and we
plan to integrate these into our framework in future work.
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5.7 Conclusion

In this study, a modified framework for Cost-sensitive learning is proposed where data
difficulty factors are considered when penalizing instances. Unlike the traditional ap-
proach, where all instances are weighted equally, this method aims to address this
limitation. Equal weighting can lead to biases towards the minority class, increasing
false positives and potentially overfitting the data by distorting the decision boundary.
This often results in higher misclassification rates during testing, especially when there
is class overlap, which significantly impairs prediction performance.

To mitigate these issues, stronger weights are assigned to minority-class samples
in overlapping regions compared to those in non-overlapping regions. By carefully
adjusting weights to prioritize challenging examples while reducing emphasis on oth-
ers, a more realistic weighting mechanism is established that minimizes misclassifi-
cations. The algorithm was evaluated on 66 imbalanced datasets using three different
classifiers, demonstrating performance improvements in most cases. Importantly, the
approach maintains computational efficiency similar to traditional Cost-sensitive meth-
ods. These modifications enhance the effectiveness of the Cost-sensitive framework by
introducing some logical adjustments.
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Chapter 6

Integrating Data Resampling and Cost-sensitive Learn-
ing: A Hybrid Approach

Data resampling and cost-sensitive learning are two popular approaches used indepen-
dently for imbalanced classification tasks. These two different can be combined to
achieve better prediction performance. In this chapter, such a hybrid framework com-
bining sampling and cost-sensitive learning has been proposed.

6.1 Overview

Sampling techniques offer the advantage of independence from the underlying clas-
sification algorithm, allowing flexibility in their application with any ML classifiers.
They generally improve performance compared to unsampled data, but their effective-
ness can be influenced by inherent data characteristics and imbalance ratios. High IR
can result in excessive generation or elimination of samples, which may lead to re-
duced generalization.

In contrast, cost-sensitive approaches do not alter the data distribution; they modify
misclassification penalties without adding new information or reducing data complex-
ity. However, adjusting penalties alone may not sufficiently mitigate bias from uneven
class distributions. Moreover, determining the appropriate misclassification costs re-
quires careful consideration and may vary across datasets.

While conventional practice involves using either sampling or cost-sensitive meth-
ods independently to address imbalanced scenarios, our study proposes integrating
sampling techniques into the cost-sensitive learning framework. The idea is to first
apply sampling to partially reduce the imbalance ratio—without fully balancing class
distribution—before employing a cost-sensitive classifier. This approach avoids exces-
sive creation or removal of minority or majority class samples, thereby reducing risks
of overfitting or loss of information, respectively. By using a moderate penalty on the
minority class after IR reduction, the bias from the majority class can be effectively
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countered. This hybrid approach can potentially offer improved performance by miti-
gating complexities associated with standalone methods.

6.2 Proposed Methodology

Cost-sensitive learning alone often struggles to fully address imbalance as it does not
alter the underlying imbalance in the dataset, leaving it susceptible to bias. Typically,
these approaches are employed independently in practice to handle imbalanced data.
However, our study introduces a novel approach that integrates both techniques to
potentially enhance performance. The rationale behind this integration is to leverage
the strengths of each approach while mitigating their respective drawbacks. This is
achieved by first reducing the imbalance ratio through sampling, followed by applying
a cost-sensitive classifier with moderate penalties assigned to the minority class.

One challenge with generating synthetic minority-class samples is that they may
not accurately represent the true minority-class distribution. Similarly, removing too
many majority-class samples risks losing important information. As the imbalance
ratio decreases, the need for extensive sample generation or removal diminishes, re-
ducing the risk of overfitting. By maintaining a moderate imbalance ratio and applying
appropriate cost penalties, the bias towards the majority class can be effectively coun-
tered.

Achieving an optimal balance between these approaches requires tuning two key
parameters: the sampling ratio (α) and the weight factor (ω). These parameters dictate
how sampling and cost penalties are applied to achieve the desired balance. Below is
a detailed outline of the step-by-step process for developing such a hybrid model.

Outline of the Algorithm

The processed dataset is first divided into training and testing sets to prevent data leak-
age, with only the training set undergoing resampling. SMOTE was chosen as the
sampling approach. Other variants of SMOTE can also be utilized.

Instead of completely balancing the dataset, a controlled degree of imbalance was
maintained during resampling, governed by the α parameter available in the imblearn
library’s SMOTE implementation. Determining the optimal α value required a search
approach tailored to the respective dataset.

Following this, an XGBoost classifier was trained on the resampled dataset, with
adjustments made to the ’scale_pos_weight’ parameter to ensure the classifier was
cost-sensitive. Both the sampling ratio (α) and the weight assigned to the minority
class (ω) were concurrently tuned using grid-search. This process involved evaluating
numerous potential values, which could be computationally intensive. To streamline
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this, insights from previous experiments were utilized to strategically narrow down the
search space and reduce computational overhead.

From these experiments, it was observed that the most effective value for the class
weight parameter ω typically aligned closely with the IR of the dataset. Similarly, α
values below 0.6 were insufficient in addressing bias, necessitating consideration of
values above 0.6 to achieve adequate imbalance mitigation. Based on these insights,
parameters for the grid search were selected to maximize the MCC score.

The parameter settings for the grid search approach are reported in Table 6.1.

Table 6.1: Parameter settings for the grid-search implementation of the proposed hybrid algo-
rithm

Parameter parameter setting
α 0.6, 0.7, 0.75, 0.8, 0.85, 0.9, 1
ω 0.25*IR, 0.5*IR, 0.6*IR, 0.75*IR, 0.9*IR, IR

6.3 Experimental Framework

In this study, the performance of our proposed approach was assessed across an ad-
ditional 36 imbalanced datasets sourced from the KEEL repository [76]. Details of
these datasets are summarized in Table 6.2. Performance was compared with those of
other well-known techniques in imbalanced learning. The XGBoost classifier was se-
lected as the base learning algorithm. Other classifiers can also be utilized. A 10-fold
stratified cross-validation methodology was adopted to evaluate model performance.
Prior to training, the data underwent normalization to ensure consistent scaling across
features. The outline of the experimental framework is demonstrated in Fig. 6.1.

6.4 Results and Discussion

The detailed performance metrics for each dataset can be found in the Additional file.
Table 6.3 presents the average performance scores across the 36 imbalanced datasets.
Figure 6.2 provides a comparative analysis of different approaches.

From Figure 3, it is evident that our proposed approach achieves the highest aver-
age scores in terms of ROC-AUC, g-mean, and MCC among all the techniques evalu-
ated. The hybrid approach combining SMOTE with a weighted classifier significantly
outperforms using SMOTE or a weighted classifier independently. It also outper-
formed other sampling techniques. There was minimal difference observed between
the performance of SMOTE and ADASYN. In contrast, the RUS algorithm yielded the
highest sensitivity score but at the expense of the lowest specificity and MCC scores.
This imbalance in prediction performance is reflected in the composite metrics such as
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Table 6.2: Summary of the datasets

Name # samples # positive samples # features IR
Wisconsin 683 239 9 1.86
vehicle2 846 218 18 2.88
vehicle1 846 217 18 2.9
vehicle3 846 212 18 2.99
vehicle0 846 199 18 3.25
new_thyroid1 215 35 5 5.14
ecoli2 336 52 7 5.46
glass6 214 29 9 6.38
yeast3 1484 163 10 8.1
ecoli3 336 35 7 8.6
yeast-2_vs_4 514 51 8 9.08
yeast-0-2-5-6_vs_3-7-8-9 1004 99 10 9.14
vowel 988 90 13 9.98
led7digit-0-2-4-6-7-89_vs_1 443 37 7 10.97
glass2 214 17 9 11.59
ecoli-0-1-4-7_vs_5-6 332 25 6 12.28
glass4 214 13 9 15.46
ecoli4 336 20 7 15.8
page-blocks-1-3_vs_4 472 28 10 15.86
abalone 731 42 8 16.4
yeast-1-4-5-8_vs_7 693 30 10 22.1
yeast 1484 51 10 28.1
yeast-1-2-8-9_vs_7 947 30 10 30.57
yeast5 1484 44 10 32.73
winequality-red-8_vs_6 656 18 11 35.44
abalone_17_vs_7_8_9_10 2338 58 8 39.31
winequality-white-3_vs_7 900 20 11 44
winequality-red-8_vs_6-7 855 18 11 46.5
Kddcup land_vs_portsweep 1061 21 40 49.52
abalone-19_vs_10-11-12-13 1622 32 8 49.69
winequality-white-3-9_vs_5 1482 25 11 58.28
poker-8-9_vs_6 1485 25 25 58.4
winequality-red-3_vs_5 691 10 11 68.1
kddcup-land_vs_satan 1610 21 30 75.67
poker-8-9_vs_5 2075 25 25 82
poker-8_vs_6 1477 17 25 85.88

MCC. Our proposed approach consistently achieved superior scores across these met-
rics. It provided the highest MCC, G-mean, ROC-AUC as well as precision score. The
performance measures demonstrate its effectiveness in addressing class imbalance.
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Table 6.3: Average of the performance measures obtained from different approaches on 36
imbalanced datasets

Metrics SMOTE ADASYN RUS Tomek-link ENN Weighted XGBoost Proposed
Accuracy 93.57 94.49 78.09 94.25 93.64 94 93.3
Sensitivity 62.34 62.5 79.72 51.06 56.79 56.44 71.22
Specificity 95.22 95.09 77.87 96.46 94.92 95.91 94.35
G-mean 70.3 70.54 76.45 59.22 62.76 65.18 78.52
ROC-AUC 78.78 78.79 78.8 73.76 75.86 76.17 82.78
Precision 59.11 59.93 39.64 57.64 55.07 59.61 60.09
MCC 56.14 56.57 46.62 49.94 51.24 53.49 60.55

6.5 Limitations and Future Work

This approach was conducted initially with the standard sampling and CS approaches
to understand the viability of such hybridization. Good improvement in performance
was noticeable. Other more sophisticated sampling and CS techniques are equally
applicable to form such hybridization. These can further improve the prediction per-
formance.

The algorithm has been tested only in binary classification scenarios. It can also be
extended for multiclass classification. Only the XGBoost classifier was utilized as the
base learner. Other classification algorithms can also be utilized in its place. Only the
SMOTE algorithm was tested for sampling the data in the proposed approach. Other
sampling techniques as well as the proposed unified sampling framework presented in
this thesis (Chapter 4) can also be utilized. Using undersampling techniques to lower
the IR while increasing the weights of the minority-class instances can be a viable
option, which we plan to test in future works. The modified CS framework, iCost
(Chapter 5), can also be utilized for the weighted classifier.

6.6 Conclusion

In this study, a novel approach to addressing class imbalance is proposed, combining
sampling techniques with a cost-sensitive learning framework. The hypothesis is that
an optimal balance between these two methods can enhance prediction performance.
This hybrid technique requires generating fewer minority-class samples and discarding
fewer majority-class samples to achieve balance. Furthermore, it reduces the penalty
weight needed in the cost-sensitive classifier.

This method effectively mitigates the limitations associated with both sampling
techniques and cost-sensitive approaches. The SMOTE algorithm was employed for
sampling in this study due to its superior performance, though other sampling tech-
niques can be integrated into the proposed framework. The results demonstrate that the
proposed approach outperformed traditional sampling techniques and cost-sensitive
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learning in both ROC-AUC and MCC scores, indicating its effectiveness in addressing
imbalanced classification problems.
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Figure 6.1: Outline of the experimental framework.
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Figure 6.2: Performance comparison with other approaches.
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Chapter 7

Conclusion

The works conducted as a part of this thesis are summarized in this chapter. The
ongoing research work on this topic as well as future works is also discussed here.

7.1 Ongoing Research Work

Most of the studies focus on binary imbalanced classification scenarios. However,
data with multiple classes are also quite prevalent but the imbalanced data handling
techniques proposed in research often neglect these cases. Multiclass imbalanced clas-
sification scenarios are far more complicated than binary ones and require more careful
handling. This has been discussed in these recent articles [68, 99].

The most commonly used approach to tackle multiclass classification is the de-
composition strategy [100]. Here, the data with multiple classes is divided into binary
classes through certain steps. Then, the traditional approaches for binary classification
can be utilized. Finally, the predictions are combined to obtain the overall perfor-
mance. One-vs-One (OVO) and One-vs-All (OVA) are two such different decomposi-
tion strategies [101]. Both are widely used in tackling different real-world classifica-
tion problems.

This type of decomposition creates certain issues. One of the issues with such a
decomposition strategy is that the resultant data with binary classes can become quite
imbalanced even if the original classes are even. The problem becomes far more com-
plicated when the data is imbalanced, which is more common in different applications.
To give an example, let us consider a dataset with 3 classes. The number of instances
available on this data are 100, 2000, and 10000 for three different classes. Now, ap-
plying the OVA strategy will create a scenario where the classifier has to learn from
a dataset with 100 instances from one class vs 12000 instances from the other class.
The class imbalance that is already present is enhanced by the application of such a
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decomposition strategy. The situation gets even more complex with a higher number
of categories. Proper steps need to be taken to alleviate such a scenario.

Several different strategies have been proposed by researchers to tackle multiclass
classification scenarios [102–104]. The traditional sampling or CS approaches are
equally applicable to multiclass scenarios. However, they do not address the other
complications that arise when the data has multiple categories. The decomposition
strategies divide the data without considering any other factors such as class imbalance
or overlapping. This leads to very poor performance in minority class categories.

To alleviate the scenario, we propose a novel decomposition strategy where the
classification is performed in multiple stages and the data is strategically divided, tak-
ing into consideration both the class imbalance and overlapping. Here, in the earlier
stages, classification is performed for the large classes while in subsequent stages,
classification is performed for smaller classes. This way, the issues faced during de-
composition are alleviated and improved prediction performance can be achieved.

The proposed method is currently under development with additional strategies be-
ing added for improved performance and generalization. The initial results are promis-
ing and the method is found to be quite effective in handling multiclass imbalanced
scenarios.

7.2 Future Work

As a continuation of the work presented in this thesis, we plan to further explore diverse
issues in the imbalanced domain. They are as follows.

• Deep learning (DL) techniques continue to evolve rapidly, with increased appli-
cation on a wide range of problems [105–109]. These techniques are also appli-
cable in imbalanced learning and have been applied in some recent works [110,
111]. More specifically, Generative Adversarial Networks (GAN) have been
utilized to generate synthetic samples. Deep Reinforcement Learning (DRL)
has also been utilized for imbalanced classification tasks [64]. A major issue
with the application of DL techniques in tabular data is that they require large
datasets which is usually unavailable in many cases, especially in critical appli-
cations such as healthcare [112, 113]. We plan to explore the feasibility of such
techniques in diverse imbalanced cases in the future.

• We plan to explore the effect of different sampling techniques on class overlap-
ping on a broad range of real-world imbalanced datasets. Relating their effect on
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class overlapping with the performance of those approaches will provide greater
insight and help develop more robust approaches.

• We want to extend and modify the proposed iCost algorithm to deal with multi-
class imbalanced scenarios in the future. We hypothesize that incorporating class
overlapping issues into the selection of penalty factors can improve performance
in rare classes.

• Creation of a new repository for imbalanced datasets is imperative. Existing ones
are quite outdated with no further inclusion of new datasets. A new repository
featuring a diverse array of real-world datasets would greatly benefit researchers
worldwide.

7.3 Summary

This thesis deals with the imbalanced learning problem that is frequently faced in dif-
ferent real-world classification tasks. As the standard classification algorithms become
biased when the data is skewed, necessary steps need to be taken to obtain reliable
predictions. The problem has caught the attention of researchers and different strate-
gies have been developed over the years to address this issue. Recent studies call for
new directions in this domain to overcome some of the bottlenecks and improve the
performance of traditional methods. In that regard, this thesis dives into new fron-
tiers in the imbalanced domain, especially focusing on data characteristics. Different
data complexity issues have been analyzed and novel strategies have been developed to
overcome the limitations of the existing methods and enhance prediction performance.

First of all, an extensive experimental analysis of the popular state-of-the-art meth-
ods used in imbalanced learning has been conducted on a wide variety of datasets. The
strengths and weaknesses of the algorithms have been identified. The major issues
that affect the performance of the classifiers when the data is imbalanced have been
distinguished. A thorough literature review has also been conducted to understand the
current status. It has been observed that the current strategies lack certain adaptabil-
ity. Many of those techniques work well only when the imbalance is low. They fail
tragically in higher imbalances. The class overlapping issue, which has been identified
as one of the major causes of data complexity, has been considered by a handful of
approaches only. Other data difficulty factors such as the rarity of certain classes, the
presence of noisy samples, and small disjunct have not been properly addressed by
most strategies. While some techniques take care of one issue but fail to address the
others. Consequently, they lack performance and generalization over a wide range of
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data. Based on these analyses and observations, three new methods have been pro-
posed in this study.

The first method is a unified approach designed to address both class imbalance
and class overlapping simultaneously. A modified SMOTE algorithm is utilized to en-
sure the proper generation of minority-class samples. A noise removal filter and an
undersampling technique are also added to further address other data difficulty factors.
The proposed sampling technique is then integrated into a modified bagging ensemble
framework for better generalization. The proposed approaches have been tested on dif-
ferent imbalanced scenarios and a significant improvement in performance over other
state-of-the-art sampling techniques has been observed. The algorithm also performs
quite well in higher imbalances where traditional approaches fail.

Secondly, a modified cost-sensitive approach is proposed that considers data com-
plexity factors. In the traditional approach, all instances are treated equally and penal-
ized. In the proposed method, instances are categorized based on their difficulty level
and penalized accordingly. This ensures a more plausible weighting of instances and
produces better prediction performance.

Thirdly, a hybridization of data resampling and cost-sensitive learning approaches
has been proposed. Such a hybrid method reduces the need for excessive sampling and
penalization. This type of approach also showed improved prediction performance and
can be useful while handling imbalanced data.

In addition to these, ongoing research is focused on multiclass imbalanced scenar-
ios. A novel decomposition strategy for multiclass datasets is currently being devel-
oped.

To conclude, this thesis presents novel approaches that consider data complex-
ity factors to address the imbalanced scenario. The proposed approaches have been
proven to be quite successful and outperform the state-of-the-art techniques in differ-
ent imbalanced scenarios. This gives a new direction in the imbalanced domain and
paves the way for the development of new strategies that are based on data-specific
characteristics.
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APPENDICES

A Appendix A Supplementary files

The supplementary files containing detailed dataset information, performance mea-
sures on individual datasets from different techniques, etc. are available in the follow-
ing repository: https://github.com/newaz-aa

The codes to replicate the algorithms are also provided in the same repository.
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