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Abstract 

,. i of a gene sequence, which is transcribed into RNA and then translated 

rotein, is a difficult task. If this could be achieved, it would make possible 

r understand how the organisms are developed from DNA information. 

e behavior of gene is highly influenced by promoter sequences residing 

_ I. I earn or downstream of the Transcription Start Site (TSS). The promoter 

gnition pro
,
cess is a part of the complex process where genes interact with 

h other over time and actually regulates the whole working process of a cell. 

Thi paper attempts to develop an efficient algorithm that can successfully 

i tinguish promoters and non promoters by analyzing statistical data. A 

learning model is developed from the known dataset to predict the unknown 

ones. 

Results: We have developed an efficient algorithm that can successfully 

distinguish genes from non-gene sequences by analyzing statistical data. A 

learning model is initially developed to train the Support Vector Machine 

(SVM) to identify distinctive features between gene and non gene. Then this 

context was used to predict other foreign sequence by the SVM. Our system 

has been tested using standard plant prom data sequence from the EMBL and 

the performances are: 0.86 for the Sensitivity and 0.90 for the specificity. 

Identification of Genetic Promoter through Stochastic Approach iv 
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Rl INTRODUC'l'lUN 

Introduction 

B_ I GROUND 
'""""'nJ'::;'ll'V'<'''' te hnology becomes popular science in recent y�ars. Biologists try to 

ecrets of l ife by going into gene sequences. However the gene 
I ' grow too huge recently. Though some mathematicians have presented 

r statistical method to discover features of gene sequences, it is sti l l  
oollSuJming and inefficient if we study gene scientists get into the biological 

�:t::::fik�r nd give some methods which take advantages of computer power to see 
uences. 

rm a biological function by interacting with other proteins, compounds, 
D A. Understanding the characteristics of interfacial sites is a requirement 

ding the molecular recognition process. In addition, the abi lity to predict 
jtes is important in mutant design and drug design . The physical and 
peets of the protein interface have been investigated in a number of 
a result, general interfacial sites are widely recognized as being more 

o . ) flat, and protruding than outer surfaces. 

o er p lays an important role in DNA transcription. It is defined as the 
"I the region of the upstream of the transcriptional start site (TSS) and 

I for the transcription from DNA to RNA. The related position of the 
'. 

a DNA sequence is i l lustrated in Figure l . l . 

Transcriptional 
Start Site 

ATG 

Promoter Downstream 

Figure 1.1: The promoter region in a DNA sequence 

Transcriptional 
Termination Site 

TAG 

o Intron 

Exon 

, romoter is required for a DNA sequence to be transcribed. In a DNA sequence 
ription, there must be a promoter in the sequence. When the promoter sequence 

und with the RNA Polymerase I I  enzyme, the DNA sequence can be transcribed 

• 7 ation of Promoter through Stochastic Approach 



- ! ""J-=:I R 1 INTRODUCTI ON 

,uence .  The central dogma of molecular biology is shown in Figure 

Transcription Translation 

:--------------��I RNA �-------= �--------------���I ___ P_r_ot_ei_n 
__ � 

Figure 1.2: The central dogma of molecular biology 

moter i sm located around the upstream of TSS in a DNA sequence, and 
erase II is always binding in that region. The transcription starts from 

f the DNA sequence, the 5' UTR (upstream of TSS) contains promoter 
. TATA-box), and the 3' UTR (downstream of TSS) contains stop codon. 
n stops when the stop codon is met. 

me times even the upstream of TSS of a DNA sequence contains some 
..... ��.,....,·, -no ..... ·o lal features, the promoter may not exist. Whether a DNA sequence 

r not can be verified biological experiments, but experiments are usually 
'ing and take high cost. With the promoter prediction method, we may be 

'vV down the promoter regions among massive DNA sequence . A farther 
-=:�,!,.-" p n t then can be designed and tested. Therefore, much more time and cost will 

: � IOTIV A TION 

n'l"iP'I1I"\rY\i inate quest of biological science is to understand how nature functions. 
. ...overy of the genetic code-the language a living organisms uses to produce 

m a nucleic-acid template- was a major step toward understanding a 
nd intriguing biological process [ 1 ] . The use of informatics to organize, 

nd analyze these data has consequently become an important e lement of 
d medical research. 

ode resides in the gene of a living organism which actually produces protein 
Q:h a process of Transcription and Translation. To understand the transcriptional 

nmlC e �, s it is necessary to identify and characterize the promoter as the motifs. The 
ter region plays a role in triggering the transcriptional process. 

loter actual ly resides mostly in the upstream of a Transcription Start Site (TSS) 
h ensure the DNA sequence to be transcribed in to mRNA. In prokaryotes some 
res have been recognized in the upstream of a gene to be the indicator of a 

. oter. Finding promoter sequences in eukaryotes are much more difficult than 
ing promoter sequences in prokaryotes. As a result researchers mostly depend on 

I.istical data. 

pite the important role of promoters the numbers of genes whose promoters have 
. n identified are limited [2] .  Traditional biological methods are not enough to 
intain and annotate the ever growing vast genomic data. Many researchers are now 

'0 king to develop good and efficient computer algorithms to identify promoter 
gi n from DNA sequence. 

e n  - cation of Promoter through Stochastic Approach 2 



CHAPTER 1 INTRODUCTI ON 

.' number of studies have been carried out on promoter prediction using Hidden 

. 'irkov Model (HMM) and Artificial Neural Network (ANN). These different 
thods show different success rates with different dataset [3, 4] .  Most of these 
thods identified promoter regions by analyzing various promoter features. A 

hine is than trained with these features to identify an unknown promoter. This 
u k attempts to propose a method to identify promoter by examining certain features 

- i h proliferantly prevai ls  in promoter. A Support Vector Machine (SVM) [5] 

ring as a binary c lassifier is then trained with these features to individually 
i ntify promoter and non promoter. 

1.3 OBJECTIVE 

_ e principal objec
.
tive of this project was to develop an efficient tool that can 

iminate between promoter and non-promoter in an unknown sequence with 
r accurac�. The results of promoter prediction with our approach in Plant, 
'n Drosophila, Mouse and Rat have clearly proved the val idity of using 
ency distribution of 4mers in discrimination between promoter and non 
oter. 

1�4 RELATED WORK 

, main problem in working with biological data is that they do not produce a 
pattern recognition that provide control signal to the cellular protein­

. i n machinery. So a symbolic pattern-recognition task for which computers 
. ularly wel l  suited cannot be applied. Total gene of even a smal l virus can be 

I undreds to thousand bases long, so discovering patterns, is tedious and 
___ . ! . •  Researches are continuously trying to find some mechanism to discover 

: tterns and associate it with protein production. In this research promoter 
• 3 ' f  at jon plays a vital role as they provide the control signal to the genes which 

. tel triggers the translation and transcription of protein. Following are some 
. -' t features of promoter sequences that have been identified and mentioned in 

-"" , ral l iteratures, 

T. T -Box CAA T box: A TAT A box is DNA sequence found in the core promoter 
cion of prokaryotes and eukaryotes. The TAT A box assists in directing RNA 

- I merase II to the initiation site downstream on DNA [6, 7]. The two identified 
mater sequence are the - 1 0  box and -35 boxes. - 1 0  and -35 indicates that these 

.... 1 . I ents always appear around the position of - 1 0  and -35 considering Transcription 
" Site (TSS) is at + 1 .  The - 1 0  box is TATA -box [3,8,9] and -35 id the CAAT 

[9]. 

C G Island: There are regions of the DNA in a gene which have a higher 
ntration of CpG sites, known as CpG Island. Roughly half of all genes in 

II alian genomes have CpG islands associated with the start of the gene. They 
. 

in approximately 400/0 of promoters of mammalian genes (about 70 % in human 
ters), Because of this, the presence of a epG island i s  used to help in the 

tion of Promoter through Stochastic Approach 3 
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nnotation of genes. "epG" stands for cytosine and guanine separated 
Ihich l inks the two nucleotides together in DNA [ 1 0, 1 1 , 1 2] .  

Enge lbrecht used an artificial neural network to discover s ignals in the 
TSS [4]. They attempted to predict whether a given DNA sequence 

1. also used Hidden Markov Model (HMM) to characterize the 
, eukaryotic promoters. They used promoters from two species to train 
und that HMMs after training can be used to help to classify the 

oters in prokaryotic [3 ] .  

been identified using protein subunit composition [9] . Promoter has 
d from Homo sapiens DNA sequence by identifying the RNA-pol l  

in Gil l  and Tijan work, where they tried to find the comparative 
of this site by looking at the partly homologous bacterial subunits. 

m ining methods are also used for this purpose such as Positional 
I i and Weight Matrix. The GBI (graph-Based Induction) method [ 1 3] is 

ta mining methods. GBI is appl ied to minimize the size of the graph by 
ntical pattern and assign ing new nodes. 

SYNTHESIS 

o tl ine for the rest of this thesis wil l  be structured as fol lows: 

lapter 1 - Introduction 
have discussed above. 

Chapter 2 - Literature Review 
hapter wi l l  contain all the relevant topics of the different areas related to 

,io Informatics and Molecular Biology, Promoter and Gene and different 
omoter Identification Methods. The Support Vector Machine is also 

. u sed in this chapter. These studied areas wi l l  help establish a general 
nderstanding and motivation for the thesis. 

Chapter 3 - Problem Definition 
This chapter wil l  cover the Necessity of Promoter Identification Method and 
I.e analysis of existing Different Promoter Identification Method. 

Chapter 4 - Proposed Method and Data Preparation 
n this chapter I discuss about my propose solution and the preparation of 
quired data. 

·01'2 of Promoter through Stochastic Approach 4 



1 INTKUUU�.1. .1.'-'.1. ... 

( '., ter 5 - Experimental Results and Comparative Analysis 
'pter wil l  present all of the results and performance produced 

'.......a'VU;"�lVUt the project. This  wil l  include results from analysis, design, 
Wit;::> 'eme, ntation and testing stages. 

'ier 6 - Conclusion and Further Scope 
n ludes with an evaluation and discussion of the success or failure of 

. e ts' outcome and also tried to give a direction for future. 

. cation of Promoter through Stochastic Approach 5 



LITERATURE REVIEW 

Literature Review 

B10INFORMATICS? 

I ioinformatics and computational biology is not necessari ly an 
few years, as the areas have grown, a greater confusion into . pre ai led. For some, the terms bioinformatics and computational 

me completely interchangeable terms, while for others, there is a 

��, .. �"u" • .I [ 4]. 
i logy and bioinformatics are multidisciplinary fields, involving 

ifferent areas of specialty, including (but in no means limited to) 
'-'-'I.I.lI-I."",I."er sc ience, physics, biochemistry, genetics, molecular biology and 

e goal of these two fields [ 1 4] is as fol lows: 

�.jJUl .. ,..,.rmatics: Typically refers to the field concerned with the collection and 
f biological information. Al l  matters concerned with biological 

o:.:..::...o.::::..o.;'a..>'i.�':) are considered bioinformatics. 
,otatioDal biology: Refers to the aspect of developing algorithms and 

1 models necessary to analyze biological data through the aid of 

the understanding of bioinformatics and computational biology 
i mitions l isted below: 

I 'cs: Research, development, or application of computational tools  and 
o expanding the use of biological, medical, behavioral or health data, 

_ 0 e to acquire, store, organize, archive, analyze, or visualize such data. 

· ........ ..-...Io( ... ,� lt. �IUJ·"U' n al Biology: The development and appl ication of data-analytical and 
hods, mathematical model ing and computational simulation techniques 
biological, behavioral, and social systems. 

bio chemistry / / .--, -co-ntro-l th-
COry

-
. ---, 

Figure 2.1: Different fields of Bioinformatics 

of Promoter through Stochastic Approach 6 



\PTER2 LITE RATURE REVIEW 

Irmatics is  becoming a very hot field. One reason behind is that i t  
an genome project which has generated a lot of popular interest. 
in molecular biology techniques (such as genome sequencing and 
!ed to a large amount of data that needs to be analyzed .  Now that 

I ing the human genome finished, what does it all mean? That ' s  
_ .... J'�L""'LIJ[U,ti s steps in. B ioinformatics can lead to important discoveries as 

anies save time and money in the long run. In addition, there needs 
manage large amounts of data. One of the biggest reasons for 

e'ng a hot field is the old supply and demand adage . There just are 
equately trained in both biology and computer science to solve the 

'-'- m1logists need to have solved. 

ODI CTION TO MOLECULAR BIOLOGY 

.0 a good computational biologist, it is important to understand the 
nd basic processes behind the biological problems. Many interesting 

out of sequence analysis .  There are two different types of biological 
_ ied in this class: DNA/RNA and amino acids. But first I want to make 

are covered. 

_ i m is made up of tiny structures called cel ls .  Often these cel ls  are too 
n with the naked eye. Each cel l  is in itself a complex system enclosed 

.--�r>,,�n, e. Some organisms, such as bacteria and baker' s yeast are composed of 
el l  (i .e. they are unicel lular) . Other organisms are made up of many 

(i. e. they are multi cellular) . For instance, the human body is composed 
o tri l l ion cells .  Humans have about 320 different cel l  types, each having a 
e of function or structural property. 

vesicle 

cytosol 

membrane 

reticulum ribosomes 

Figure 2.2: Structure of an animal cell [14] 

tion of Promoter through Stochastic Approach 7 



LllhKATUKh KhVlhW 

�: eukaryotes and prokaryotes [14]. Eukaryotes (or as 
f Oklahoma calls  them the "You and I" Karyotes) 
\' hich we can see, including plants and animals. 

:... . a are smaller than eUkaryotic cells and have simpler 
siogle cellular organisms (but not al l  single-celled 

tween the two types of cells? A eukaryotic cell has a 
-=-- lr�.�Le ' from the rest of the cel l  by a membrane. Inside the 

Gi:JiOiIlOsomes \ here all of the genetic information for the organism is 
f tic cells contain membrane bound organelles with various 

el j les lysosomes, mitochondria, ribosomes, etc. 

leus are one or several long double stranded DNA molecules 
�:Th710Slom,es. For humans, there are 22 pairs of autosomes, as well as 

omes [14]. One copy of each pair is inherited from each 

t------I 
5prrt 

Ir n if' '( () 
1 lJ 3 4 5 
It Ir IS I) Ilnll V 7

. 
8 9 10 .. · · 

' 
.
. . 1. 

.. 1 . •
. 
2 . . ,. Ir ,. 11=�1f 

13 14 15 16 17 18 
'* I' I. '" r. .. I 19 20 21 22 Y 

'. Karyotype showing the 23 pairs of human chromosomes [14] 

£�-::;':�'dei Acid (DNA) is the basis for the building blocks encoding the 
- rre. A single stranded DNA molecule, called a polynucleotide or 

ain of smal l molecules called nucleotides. There are four different 
. es: adenosine (A), cytosine (C), guanine (G) and thymine (T) [14]. 

be separated into two different types :  purines (A and G) and 
and T) . The difference between purines and pyrimidines is in the base 

............ -.:::o-.:=:- 0 ther a simple alphabet of four characters together we can get enough 
reate a complex organism! Different nucleotides can be strung 

rm a polynucleotide. However, the ends of the polynucleotide are 
ing that each polynucleotide sequence will have directional ity. The 

uc leotide are marked either 3 '  or 5'. The general convention is to 
. g strand from 5' to 3 '  (left to right). 

o Ptomoter through Stochastic Approach 8 



LITERATURE REVIEW 

ChrOMosome 

Figure 2.4: Snap of a DNA sequence within a cell [14] 

he following is a polynucleotide : 
_ '�A�A�G�T �C�C�C�G�T �T �A�G�C 3' 

e e ither s ingle-stranded or double stranded.  When DNA is double­
econd strand is referred to as the reverse complement strand. This 

. .  led from the fact that the directionality of thi s  second strand runs in the 
tion as the first, and the fact that the bases in the second strand are 

CC::;;':e:iileIltaJ:Y to the bases in the first. Complementary bases are determined by 
f nuc leotides can form bonds between them. In the case of DNA, A 

and C binds to G. For the polynucleotide given above, the double-
t nuc leotide is as fol lows: 

.T �A�A�A�G�T �C�C�C�G�T �T �A�G�C 3' 
I I II I I I I I I I 

_' '�T� T� T�C�A�G�G�G�C�A�A� T�C�G 5' 
I mentary polynucleotide chains form a stable structure known as the DNA 
llx, This spring represents the 50th anniversary of the discovery of the 
Ii. structure of DNA by Watson, Crick and Franklin. 

I.:;;:ZJr.rzc!,j�i ·o 0 Promoter through Stochastic Approach 9 



LITERATURE REVIEW 

Figure 2.5: DNA double helix structure [ 1 4] 

'be there appear to be two types of grooves :  A larger one, which 
o e and a smal ler one, known as the minor groove. In addition, 

0.'- base pairs in one complete turn of the helix. 

i.il' (RNA) is similar to DNA in the fact that it is  constructed from 
er, instead of thymine (T), an alternative base uracil  (U) is found 
be found as double-stranded or single-stranded, and can also be 

helix where one strand is an RNA strand and the other is  a DNA 
generally found as a single stranded molecule that may form a 

-""'-& ,,_ .... . , .... re or tertiary structures due to the complementary bases between 
strand [1 5 ] .  RNA folding wil l  be discussed in detail  during a later 

is important in the cel l  and contributes in a variety of ways. One 
rtant roles of RNA is in protein synthesis. Two of the major RNA 

- ·01 'ed In protein synthesis are messenger RNA (mRNA) and transfer 

EsclkriC/li(1 coli 
RNase P RNA 

Figure 2.6: Secondary structure for E. coli Rnase P RNA [ 1 5] 

...---::o,._,_.·on 0 r Promoter through Stochastic Approach 1 0  



g,enetic information as copied from the DNA molecules. 
ro ess in  which DNA is copied into an RNA molecule. The 

. tile is an mRNA transcript. In eukaryotic cel ls, before the 

.ted into a protein, it needs to be modified [ 1 5] .  The nature of 
is that the genes are created in pieces, where coding regions, 

rspersed with noncoding regions, called introns. One of the 
e mRNA is to remove the intronic regions and to splice together 

. regions. The processed mRNA can then be transported from the 
______ _...' ''''_ tiiCESJ!atf:�d into a protein sequence. 

:Poly(A) 
site 

! Transcription 

...... -------�--............................. �---- .......... al � Cleavage by � endonuclease 

..... .......---------------..... 31 ! ��t�A) polymerase 

5', 

! RNA splicing 

A, 00-25031 

Figure 2.7: mRNA processing 

pre�mRNA 
processing 

����ll <? deve lop a well-defined three-dimensional structure which is critical 
proteins. Attached to each tRNA molecule is an amino acid (which 

.::s:cussed momentari ly). The amino acid to be attached is determined by a 
nce cal led an anticodon sequence, which is complementary to the 
mRNA. Translation is the process in which the nucleotide base 
processed mRNA is used to order and join the amino ac ids into a 

, eJp of ribosomes and tRNA [ 1 5 ] .  

.L:.J;::::;;::-=tm{J� 0 Promoter through Stochastic Approach 11 



A 

. secondary structure [15] Figure 2.9: tRNA tertiary structure [15] 

ems 

the building blocks from which proteins are made. There are 20 
ids that vary from each other by their side chain groups. Amino 
ified into different groups based on their solubility in water . 

. 0 acids are water soluable, while hydrophobic are not. This 
1�,"","np.C' important when a protein sequence is made. Amino acids are 

ther via a single chemical bond, called a peptide bond. A linear 
ids can be referred to as a peptide (if it is short - less than 30 a.a. 

_' '' V''·-.IP r ,tide (which can be upwards of 4000 residues long). 

Table 2.1: Amino Acid Codes 
r 

.

.... _ ........••••.•..•.. _-_._., .....• f···_·-_·_·-,··· ···· __ · f'-----·--,.···.··· .. ·-'- r 

lOne-letter Three-letter iFull name I ;O--··------iOL y----,. rGly�'ine '."-11 
l � ; 

• [ . r I IA !ALA IAlanine I , �,·----.. ··· .. ·-·-- ·--- I 
VAL IValine I 

IL ···· ILEU ·· ·· · · .. .. .. ······················· IL
��cin� � 1 

�fiLE---[Isoleucine -I r;:-� .. -- �·-- ---- i--·----·-··--

IF IPHE . IPhenylalanine 

Ii> !PRO . 'IProline �-·-----··'r-·---··-�-'---��I 
IS !SER ISerine 
! ! i 

liT ITHR ........ . . ....... .. .... .. . 

[Threonine I I r···· .. ···•· .. ·----··-' r···--'_······· __ ··-····_-- r·· · -·""··" ···-·'--·---· 
:c ICYS ICysteine . i j l 

, .  'f" •..•• " ....... " • ,. r" ,.,., . .. ,- .... , ····· .. 1 
M IMET ine i 

W ITRP ITryptophan I 
L2��".rnon 0 Promoter through Stochastic Approach 12 



Q 
D 

E 

K 

sme 

iGlutamine 
!Aspartic acid 
!Glutamic a�id-

--- �--- ...... . 

LYS ILysine ..---_-.w.w.�y._.-..-

R :ARG IArginine 
-----r' -----r--···- ········ -·-···,····-·, ' · .... · .. · ........ ·1 
_H_I ____ '_H_I _S _ ___ I_H_is_t .i�in�_. ____ J 

: tides that have a three dimensional structure. They can be 
ur different hierarchical levels: 

trncture - the sequence of amino acids constituting the polypeptide 

In structure - the local organization of the parts of the polypeptide 
ndar structures such as a helices and f3 sheets. 

- fracture - the three dimensional arrangements of the amino acids 
t to one another due to the polarity and resulting interactions 

.. if side chains. 
Ilj structure - if a protein consists of several protein subunits held 

in the protein can be described as well by the number and relative 
the subunits. 

Visualization of Protein Structures. 

ha helix Blue: Monomer A 
- I Sheets Orange: Monomer B 

Figure 2.10: Protein Structure [15] 

rough Stochastic Approach 13 



LITERATURE REVIEW 

econdary and tertiary structure of a protein given its primary 
as task. Protein folding prediction will be covered at some point 

o the semester. 

mall molecule that can be linked with others of the same type to 
'-"'-""'._�'-" For the purpose of this class, the molecules could be nucleic acids, 

all molecules of the same type linked together. 

mall molecules of the same type linked together. 

ral term for a short polymer most commonly consisting of nucleic 
�ds. 

large molecule consisting of multiple identical or similar subunits 
- I nt bonds. 

ogether, we get the flow of genetic information. That is, DNA directs 
...... � ___ .. .;:r......,. 0 RNA, and RNA then in tum directs the synthesis of protein. This . information from nucleic acids to protein has been called the Central 

ular Biology. 

tRNAs 

:� 

Atf�d 
-""'IIiIiii.;;'I amino aci,d 

;$t'OW1h9 ,.,11<1. ahedn 

DNA 
� 
RNA 
� 
PROTEIN 

Figure 2.11: Central Dogma of Molecular Biology [15] 

IE, TRANSCRIPTOME, PROTEOME 

e term genome is used, it typically refers to the chromosomal DNA of an 
""""'-:'..::.._""""'"-J ...... 0 as far as sequencing is concerned, the heterochromatic regions of the 
_, ................. ..J)"-' .. ,'ul DNA. The number of chromosomes and genome size varies quite 
�;---..u.:..J�'--'"--'I.'�' 1" from one organism to another. An example list of genome sizes is given 

t be fooled by this table that the size of the genome and the number of 
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genes determines the complexity of an organism. In fact, many plant genomes are 
much greater in size than the human genome! 

Table 2.2: Chromosomes, Genes and Genome Sizes in different Organisms 

ORGANISM CHROMOSOMES GENOME SIZE GENES 

Homo sapiens 23 3,200,000,000 � 30,000 
(Humans) 
Mus musculus 20 2,600,000,000 �30,000 
(Mouse) 
Drosophila 4 180,000,000 �18,000 
melanogaster (Fruit 
Fly) 
Saccharomyces 16 14,000,000 �6,000 
cerevisiae (Yeast) 
Zea mays (Corn) 10 2,400,000,000 ??? 

The term transcriptome refers to the complete collection of all possible mRNAs 
(including splice variants) of an organism. This can be thought of as the regions of an 
organism's genome that get transcribed into messenger RNA. In some cases, the 
transcriptome can be extended to include all transcribed elements, including non­
coding RNAs used for structural and regulatory purposes. 

The term proteome refers to the complete collection of proteins that can be produced 
by an organism. The proteome can be studied either as a static (sum of all proteins 
possible) or a dynamic (all proteins found at a specific time point) entity. 

2.3 PROTEIN METABOLISM 

Proteins are the end products of most information pathways. A typical cell requires 
thousands of different proteins at any given moment. These must be synthesized in 
response to the cell's current needs, transported (targeted) to their appropriate cellular 
locations, and degraded when no longer needed. 

An understanding of protein synthesis, the most complex biosynthetic process, has 
been one of the greatest challenges in biochemistry. Eukaryotic protein synthesis 
involves more than 70 different ribosomal proteins; 20 or more enzymes to activate 
the amino acid precursors; a dozen or more auxiliary enzymes and other protein 
factors for the initiation, elongation, and termination of polypeptides; perhaps 100 
additional enzymes for the final processing of different proteins; and 40 or more kinds 
of transfer and ribosomal RNAs. Overall, almost 300 different macromolecules 
cooperate to synthesize polypeptides. Many of these macromolecules are organized 
into the complex three-dimensional structure of the ribosome [15]. 

To appreciate the central importance of protein synthesis, consider the cellular 
resources devoted to this process. Protein synthesis can account for up to 90% of the 
chemical energy used by a cell for all biosynthetic reactions. Every prokaryotic and 
eukaryotic cell contains from several to thousands of copies of many different 
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proteins and RNAs. The 15,000 ribosomes, 100,000 molecules of protein synthesis­
related protein factors and enzymes, and 200,000 tRNA molecules in a typical 
bacterial cell can account for more than 35% of the cell's dry weight. 

Despite the great complexity of protein synthesis, proteins are made at exceedingly 
high rates. A polypeptide of 100 residues is synthesized in an Escherichia coli cell (at 
3 7 _C) in about 5 seconds. Synthesis of the thousands of different proteins in a cell is 
tightly regulated, so that just enough copies are made to match the current metabolic 
circumstances. To maintain the appropriate mix and concentration of proteins, the 
targeting and degradative processes must keep pace with synthesis. Research is 
gradually uncovering the finely coordinated cellular choreography that guides each 
protein to its proper cellular location and selectively degrades it when it is no longer 
required. 

2.3.1 THE GENETIC CODE 

Three major advances set the stage for our present knowledge of protein biosynthesis. 
First, in the early 1950s, Paul Zamecnik and his colleagues designed a set of 
experiments to investigate where in the cell proteins are synthesized. They injected 
radioactive amino acids into rats and, at different time intervals after the injection 
removed the liver, homogenized it, fractionated the homogenate by centrifugation, 
and examined the subcellular fractions for the presence of radioactive protein. When 
hours or days were allowed to elapse after injection of the labeled amino acids, all the 
subcellular fractions contained labeled proteins. However, when only minutes had 
elapsed, labeled protein appeared only in a fraction containing small 
ribonucleoprotein particles. These particles, visible in animal tissues by electron 
microscopy, were therefore identified as the site of protein synthesis from amino 
acids, and later were named ribosomes. 

The second key advance was made by Mahlon Hoagland and Zamecnik, when they 
found that amino acids were "activated" when incubated with A TP and the cytosolic 
fraction of liver cells. The amino acids became attached to a heat-stable soluble RNA 
of the type that had been discovered and characterized by Robert Holley and later 
called transfer RNA (tRNA), to form aminoacyl-tRNAs. The enzymes that catalyze 
this process are the aminoacyl-tRNA synthetases [15]. 

The third advance resulted from Francis Crick's reasoning on how the genetic 
information encoded in the 4- letter language of nucleic acids could be translated into 
the 20-letter language of proteins. A small nucleic acid (perhaps RNA) could serve 
the role of an adaptor, one part of the adaptor molecule binding a specific amino acid 
and another part recognizing the nucleotide sequence encoding that amino acid in an 
mRNA (Fig. 27-2). This idea was soon verified. The tRNA adaptor "translates" the 
nucleotide sequence of an mRNA into the amino acid sequence of a polypeptide. The 
overall process of mRNA-guided protein synthesis is often referred to simply as 
translation [ 15]. 
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These three developments soon led to recognition of the major stages of protein 
synthesis and ultimately to the elucidation of the genetic code that specifies each 
amino acid. 

Since there are 4 possible bases (A, C, G, U) and 3 bases in the codon, there are 4 * 4 
* 4 = 64 possible codon sequences. However, the codon AUG can also be used as a 
signal to initiate translation, while the codons UAA, UAG, and UGA are terminal 
codons signaling the end of translation. That leaves a 6 1  codon sequences that can 
code for amino acids (AUG can also code for an amino acid). However, there are 
only 20 amino acids. Therefore the genetic code is redundant, meaning that a single 
amino acid could be coded for by several different codons. 

Table 2.3: Genetic Code 

UUU Phe [F] UCU Ser [S] UAU Tyr [V] UGU Cys [C] 
UUC Phe [F] UCC Ser [S] UAC Tyr [V] UGC Cys [C] 
UUA Leu [L] UCA Ser [S] UAA STOP 

UUG Leu [L] UCG Ser [S] UAG STOP 

UGA STOP 

UGG Trp [W] 

CUU Leu (LJ 

C 
CUC Leu [L] 
CUA Leu [L] 

CCU Pro (PJ 
CCC Pro [P] 
CCA Pro [P] 

CAUHis [HJ 
CAC His [H] 
CAA GIn [Q] 

A 

CUG Leu [L] CCG Pro [P] CAG GIn [Q] CGG Arg [R] 

AUU lie [I] 
AUC lie [I] 
AUA lie [I] 
AUG Met [M] 

GUU Val [V] 

ACU Thr [T] AAU Asn [N] AGU Ser [S] 
ACC Thr [T] AAC Asn [N] AGC Ser [S] 
ACA Thr [T] AAA Lys [K] AGA Arg [R] 
ACG Thr [T] AAG Lys [K] AGG Arg [R] 

G 
GUC Val [V] 
GUA Val [V] 
GUG Val [V] 

GCU Ala [A] GAU Asp [D] GGU Gly [G] 
GCC Ala [A] GAC Asp [D] GGC Gly [G] 
GCA Ala [A] GAA Glu [E] GGA Gly [G] 
GCG Ala [A] GAG Glu [E] GGG Gly [G] 

Note that the initiator codon is labeled in green, and the terminal codons are labeled in 
red. The first column gives the triplet base; the second the three letter amino acid 
label, and the third the one letter amino acid label [ 15]. 
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2.3.2 PROTEIN SYNTHESIS 

As we have seen for DNA and, the synthesis of polymeric biomolecules can be 
considered in terms of initiation, elongation, and termination stages. These 
fundamental processes are typically bracketed by two additional stages: activation of 
precursors before synthesis and post synthetic processing of the completed polymer. 
Protein synthesis follows the same pattern. The activation of amino acids before their 
incorporation into polypeptides and the posttranslational processing of the completed 
polypeptide play particularly important roles in ensuring both the fidelity of synthesis 
and the proper function of the protein product. The cellular components involved in 
the five stages [15] of protein synthesis in E. coli and other bacteria are listed in Table 
2.4; the requirements in eukaryotic cells are quite similar, although the components 
are in some cases more numerous. An initial overview of the stages of protein 
synthesis provides a useful outline for the discussion that follows. 

Protein Biosynthesis Takes Place in Five Stages 

Stage 1: Activation of Amino Acids For the synthesis of a polypeptide with a defined 
sequence, two fundamental chemical requirements must be met: (1) the carboxyl 
group of each amino acid must be activated to facilitate formation of a peptide bond, 
and (2) a link must be established between each new amino acid and the information 
in the mRNA that encodes it. Both these requirements are met by attaching the amino 
acid to a tRNA in the first stage of protein synthesis. Attaching the right amino acid to 
the right tRNA is critical. This reaction takes place in the cytosol, not on the 
ribosome. Each of the 20 amino acids is covalently attached to a specific tRNA at the 
expense of A TP energy, using Mg2 _- dependent activating enzymes known as 
aminoacyltRNA synthetases. When attached to their amino acid (aminoacylated) the 
tRNAs are said to be "charged." 

Stage 2: Initiation The mRNA bearing the code for the polypeptide to be made binds 
to the smaller of two ribosomal subunits and to the initiating aminoacyl-tRNA. The 
large ribosomal subunit then binds to form an initiation complex. The initiating 
aminoacyl-tRNA basepairs with the mRNA codon AUG that signals the beginning of 
the polypeptide. This process, which requires GTP, is promoted by cytosolic proteins 
called initiation factors. 

Stage 3: Elongation The nascent polypeptide is lengthened by covalent attachment of 
successive amino acid units, each carried to the ribosome and correctly positioned by 
its tRNA, which base-pairs to its corresponding codon in the mRNA. Elongation 
requires cytosolic proteins known as elongation factors. The binding of each incoming 
aminoacyl-tRNA and the movement of the ribosome along the mRNA are facilitated 
by the hydrolysis of GTP as each residue is added to the growing polypeptide. 
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Table 2.4: Components Required for the Five Major Stages of Protein Synthesis in E. 
coli 

Stage Essential Components 
1. Activation of amino acids 20 amino acid 

2. Initiation 

3. Elongation 

20 aminoacyltRNA synthetases 
32 or more tRNAs 
Mg2+ 

mRNA 
N-Formylmethionyl-tRNAfmet 
Initiation codon in mRNA (AUG) 
30S ribosomal subunit 
50S ribosomal subunit 
Initiation factors (IF-I, IF-2, IF-3) 
GTP 
Mg2+ 
Functional 70S ribosome (initiation 
complex) 
Aminoacyl-tRNAs specified by codons 
Elongation factors (EF -Tu, EF -Ts, EF -G) 
GTP 
Mg2+ 

4. Termination and Release Termination codon in mRNA 
Release factors (RF-I, RF-2, RF-3) 

5. Folding and 
processing 

posttranslational Specific enzymes, cofactors, and other 
components for removal of initiating 
residues and signal sequences, 
additional proteolytic processing, 
modification of 
terminal residues, and attachment of 
phosphate, 
methyl, carboxyl, carbohydrate, or 
prosthetic groups 

Stage 4: Termination and Release Completion of the polypeptide chain is signaled 
by a termination codon in the mRNA. The new polypeptide is released from the 
ribosome, aided by proteins called release factors. 

Stage 5: Folding and Posttranslational Processing In order to achieve its 
biologically active form, the new polypeptide must fold into its proper three­
dimensional conformation. Before or after folding, the new polypeptide may undergo 
enzymatic processing, including removal of one or more amino acids (usually from 
the amino terminus); addition of acetyl, phosphoryl, methyl, carboxyl, or other groups 
to certain amino acid residues; proteolytic cleavage; and/or attachment of 
oligosaccharides or prosthetic groups. 
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2.3.3 PROTEIN TARGETING AND DEGRADATION 

The eukaryotic cell is made up of many structures, compartments, and organelles, 
each with specific functions that require distinct sets of proteins and enzymes. These 
proteins (with the exception of those produced in mitochondria and plastids) are 
synthesized on ribosomes in the cytosol, so how are they directed to their final 
cellular destinations. 

Proteins destined for secretion, integration in the plasma membrane, or inclusion in 
lysosomes generally share the first few steps of a pathway that begins in the 
endoplasmic reticulum. Proteins destined for mitochondria, chloroplasts, or the 
nucleus use three separate mechanisms. And proteins destined for the cytosol simply 
remain where they are synthesized. 

The most important element in many of these targeting pathways is a short sequence 
of amino acids called a signal sequence [ 15]. The signal sequence directs a protein to 
its appropriate location in the cell and, for many proteins, is removed during transport 
or after the protein has reached its final destination. In proteins slated for transport 
into mitochondria, chloroplasts, or the ER, the signal sequence is at the amino 
terminus of a newly synthesized polypeptide. In many cases, the targeting capacity of 
particular signal sequences has been confirmed by fusing the signal sequence from 
one protein to a second protein and showing that the signal directs the second protein 
to the location where the first protein is normally found. The selective degradation of 
proteins no longer needed by the cell also relies largely on a set of molecular signals 
embedded in each protein's structure. 

2.4 INTRODUCTION TO PROMOTER AND GENE 

2.4.1 PROMOTER 

In biology, a promoter is a regulatory region of DNA located upstream (towards the 5' 
region) of a gene, providing a control point for regulated gene transcription [ 16]. 

The promoter contains specific DNA sequences that are recognized by proteins 
known as transcription factors. These factors bind to the promoter sequences, 
recruiting RNA polymerase, the enzyme that synthesizes the RNA from the coding 
region of the gene [ 17]. 

In prokaryotes, the promoter is recognized by RNA polymerase and an associated 
sigma factor, which in turn are brought to the promoter DNA by an activator protein 
binding to its own DNA sequence nearby [ 18]. 

In eukaryotes, the process is more complicated, and at least seven different factors are 
necessary for the transcription of an RNA polymerase II promoter. 

Promoters represent critical elements that can work in concert with other regulatory 
regions (enhancers, silencers, boundary elements/insulators) to direct the level of 
transcription of a given gene [ 19]. 
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It is worth noting that promoters are not DNA specific, and can in fact locate 
upstream towards the 3' end of a RNA genome, e.g. Respiratory Syncytial Virus 
(RSV). 

Identification of relative location : 

As promoters are typically immediately adjacent to the gene in question, positions in 
the promoter are designated relative to the transcriptional start site, where 
transcription of RNA begins for a particular gene (i.e., positions upstream are 
negative numbers counting back from -1, for example -100 is a position 100 base 
pairs upstream) [20]. 

Promoter Elements 

Core promoter - the minimal portion of the promoter required to properly initiate 
transcription [17]. 
Transcription Start Site (TSS): Approximately -34, A binding site for RNA 
polymerase 
RNA polymerase I: transcribes genes encoding ribosomal RNA. 
RNA polymerase II: transcribes genes encoding messenger RNA and certain small 
nuclear RNAs. 
RNA polymerase III: transcribes genes encoding tRNAs and other small RNAs. 
This type of promoter has General transcription factor binding sites. 

Proximal promoter - the proximal sequence upstream of the gene that tends to contain 
primary regulatory elements [19, 17]. 
Transcription Start Site (TSS): Approximately -34 
This type of promoter has Specific transcription factor binding sites 

Distal promoter - the distal sequence upstream of the gene that may contain additional 
regulatory elements, often with a weaker influence than the proximal promoter [20]. 
Transcription Start Site (TSS): Anything further upstream (but not an enhancer or 
other regulatory region whose influence is positional/orientation independent). 
This type of promoter has Specific transcription factor binding sites. 

Prokaryotic promoters 

In prokaryotes, the promoter consists of two short sequences at -10 and -35 positions 
upstream from the transcription start site. Sigma factors not only help in enhancing 
RNAP binding to the promoter but helps RNAP target which genes to transcribe [18]. 
The sequence at -10 is called the Pribnow box, or the -10 element, and usually 
consists of the six nuc1eotides TATAAT. The Pribnow box is absolutely essential to 
start transcription in prokaryotes [21]. 

The other sequence at -35 (the -35 element) usually consists of the six nuc1eotides 
TTGACA. Its presence allows a very high transcription rate. 

Both of the above consensus sequences, while conserved on average, are not found 
intact in most promoters. On average only 3 of the 6 base pairs in each consensus 
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sequence is found in any given promoter. No promoter has been identified to date that 
has intact consensus sequences at both the -10 and -35; it is thought that this would 
lead to such tight binding by the sigma factor that the polymerase would be unable to 
initiate productive transcription [19]. 

It should be noted that the above promoter sequences are only recognized by the 
sigma-70 protein that interacts with the prokaryotic RNA polymerase. Complexes of 
prokaryotic RNA polymerase with other sigma factors recogni�e totally different core 
promoter sequences. 

Eukaryotic promoters 

Eukaryotic Promoters are extremely diverse and are difficult to characterize. They 
typically lie upstream of the gene and can have regulatory elements several kilobases 
away from the transcriptional start site. In eukaryotes, the transcriptional complex can 
cause the DNA to bend back on itself, which allows for placement of regulatory 
sequences far from the actual site of transcription. Many eukaryotic promoters, but by 
no means all, contain a TAT A box (sequence TATAAA), which in tum binds a 
TAT A binding protein which assists in the formation of the RNA polymerase 
transcriptional complex. The TAT A box typically lies very close to the 
transcriptional start site (often within 50 bases) [18]. 
Eukaryotic promoter regulatory sequences typically bind proteins called transcription 
factors which are involved in the formation of the transcriptional complex. An 
example is the E-box (sequence CACGTG), which binds transcription factors in the 
basic-helix-Ioop-helix (bHLH) family (e.g. BMAL1-Clock, cMyc) [21]. 

2.4.2 GENE 

A gene is a locatable region of genomic sequence, corresponding to a unit of 
inheritance, which is associated with regulatory regions, transcribed regions and/or 
other functional sequence regions [22,23]. The physical development and phenotype 
of organisms can be thought of as a product of genes interacting with each other and 
with the environment [24], and genes can be considered as units of inheritance. A 
concise definition of gene taking into account complex patterns of regulation and 
transcription, genic conservation and non-coding RNA genes has been proposed by 
Gerstein et al "A gene is a union of genomic sequences encoding a coherent set of 
potentially overlapping functional products" [25]. 

In cells, genes consist of a long strand of DNA that contains a promoter, which 
controls the activity of a gene, and a coding sequence, which determines what the 
gene produces. When a gene is active, the coding sequence is copied in a process 
called transcription, producing an RNA copy of the gene's information. This RNA can 
then direct the synthesis of proteins via t�e genetic code. However, RNAs can also be 
used directly, for example as part of the ribosome. These molecules resulting from 
gene expression, whether RNA or protein, are known as gene products. 
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Most genes contain non-coding regions that do not code for the gene products, but 
regulate gene expression. The genes of eukaryotic organisms can contain non-coding 
regions called introns that are removed from the messenger RNA in a process known 
as splicing. The regions that actually encode the gene product, which can be much 
smaller than the introns, are known as exons. In eukaryotes, one single gene can lead 
to the synthesis of multiple proteins through the different arrangements of exons 
produced by alternative splicing. In prokaryotes, such as bacteria and achaea, genes 
are arranged in operons with promoter and operator sequences regulating transcription 
of an RNA that contains multiple coding sequences that produce multiple proteins. 

The total complement of genes in an organism or cell is known as its genome. An 
organism's genome size is generally lower in prokaryotes such as bacteria and archaea 
have generally smaller genomes, both in number of base pairs and number of genes, 
than even single-celled eukaryotes. However, there is no clear relationship between 
genome sizes and perceived complexity of eukaryotic organisms. One of the largest 
known genomes belongs to the single-celled amoeba Amoeba dubia, with over 670 
billion base pairs, some 200 times larger than the human genome [26]. The estimated 
number of genes in the human genome has been repeatedly revised downward since 
the completion of the Human Genome Project; current estimates place the human 
genome at just under 3 billion base pairs and about 20,000-25,000 genes [27]. A 
recent Science article gives a final number of 20,488, with perhaps 100 more yet to be 
discovered [28]. The gene density of a genome is a measure of the number of genes 
per million base pairs (called a megabase, Mb); prokaryotic genomes have much 
higher gene densities than eukaryotes. The gene density of the human genome is 
roughly 12- 15 genes/Mb [29]. 

Functional structure of a gene 

All genes have regulatory regions in addition to regions that explicitly code for a 
protein or RNA product. A universal regulatory region shared by all genes is known 
as the promoter [16], which provides a position that is recognized by the transcription 
machinery when a gene is about to be transcribed and expressed. Although promoter 
regions have a consensus sequence that is the most common sequence at this position, 
some genes have "strong" promoters that bind the transcription machinery well, and 
others have "weak" promoters that bind poorly. These weak promoters usually permit 
a lower rate of transcription than the strong promoters, because the transcription 
machinery binds to them and initiates transcription less frequently. Other possible 
regulatory regions include enhancers, which can compensate for a weak promoter. 
Most regulatory regions are "upstream" - that is, before or toward the 5' end of the 
transcription initiation site. Eukaryotic promoter [18, 21] regions are much more 
complex and difficult to identify than prokaryotic promoters [16]. 

Many prokaryotic genes are organized into operons, or groups of genes whose 
products have related functions and which are transcribed as a unit. By contrast, 
eukaryotic genes are transcribed only one at a time [30], but may include long 
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stretches of DNA cal led introns which are transcribed but never trans lated into protein 
(they are spl iced out before translation) [3 1 ] .  

2 .5  SUPPORT VECTOR MACHINE (SVM) 

Support vector machines (SVM) are supervised learning algorithms proposed by 
Vapnik (Vapnick, 1 995) .  Data examples labeled as positive or negative are projected 
into a high-dimensional feature space using a kernel,  and the hyper-plane in the 
feature space is optimized to maximize the margin between the positive and negative 
examples. 

We used LibSVM [32] . Only user-defined kernel subroutines were implemented. In 
this application, l inear, polynomial, Radial B ias Function (RBF), and Gaussian 
kernels and their sum and product kernels  are used. The RBF performs the best when 
vector data is to be mapped from l inear to multidimensional hyperplane margin and 
we therefore report only the results for the RBF kernel .  

Since the SVM optimizes the success ratio for whole sequences but does not optimize 
the recal l and precision (defined below) of interaction sites, prediction performance 
depends on the ratio of negative and positive data in the learning process. According 
to the definition, only about 200/0 of a whole sequence is interaction site residues. If 
all data are used as learning samples, the prediction result at the default discriminant 
value (=zero) shows high precision and low recall .  Accordingly, half the negative data 
(non-interaction site residues) were randomly removed from the learning sets when 
whole sequence residues were used as feature vectors, while a third of the negative 
data was randomly removed when only surface residues were used as feature vectors 
in Table 2 .5  [33 ] .  Basically, when the recal l-FP/(FP+ TP) curves were generated, al l  
the data were used. 

S ince there was sufficient data for homo-hetero mixed validation (if three-fold cross 
validation was used, the learning time is too long), leave 375 (=2/3 * 563) cross 
validation was used. For homo and hetero complex validation, five-fold and three-fold 
cross validation were used, respectively. In predicting interaction site ratios, ten-fold 
cross validation was used for mixed homo and hetero validation data. When no 
expl icit statement is made, "homo-hetero mixed data" was used. 

For homo-hetero mixed val idation data, "filtering by boosting "(Schapire, 1 990), 
which converts a weak learning algorithm into a stronger learning machine, was also 
appl ied. This consisted of the fol lowing steps. First, the SVM learned using N 
samples (abbreviated as SVM- l ) . Using SVM- l and a random number, N/2 : wrongly 
predicted (false negative or false positive) samples and N/2 : correctly predicted (true 
positive or true negative) samples were gathered. They became the learning set for 
SVM-2 [for detai ls  see Schapire, 1 990] . Next, the N samples that were predicted 
differently by SVM- l and SVM-2 were col lected and these became the learning set 
for SVM-3 . The predictions were decided according to the majority of SVM- l ,  SVM-
2, and SVM-3 predictions. Using this method, ten-fold cross val idation was carried 
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Table 2.5: The recall and precision of each feature vector 

Data-type: feature vectorl recale (%) precision3 success rate at success rate at 
(%) whole sequence4 surface5 (%) 

(%) 
mix6 : whole sequence? 28.8 26 .4 (20.0) 69. 1 (66.6) 63 . 5  (60.9) 
(window I I ) (22 .3) 1 3  
mix: whole sequence + 28 .8  (2 1 .9) 27.0 (20.0) 69. 1 (66.9) 63 .7 (6 1 .0) 
boosting by filtering 
(window 5) 
mix: whole sequence + 3 5 .2 (20.0) 35 . 8  (20.0) 74 .0 (68.0) 68 .0 (6 1 . 8) 
actual interaction site 
ratio (window 5) 
mix: whole sequence + 28 .3 ( 1 8 .3)  30 .7 (20.0) 72 .4 (69 .0) 65 .6 (62.7) 
prediction interaction site 
ratio (window 5) 
mix: sequence at surface 39 .6 (30.4) 40.2 (30.4) - 63 .2 (57.6) 
(window 1 1 ) 
mix: sequence + ASA 4 1 .5 (23 .3)  54.9 (30.4) - 7 1 .4 (60.5) 
(window 9) 
mix: spatial ly 44.6 (24 .5)  56 . 1 (30 .4) - 7 1 .0 (60.0) 
neighboringB + ASA ( 1 5  
residues) 
mix: spatial ly 50 .4 (26.8) 5 8 . 1  (30 .4) - 73 .5 (59. 1 )  
neighboringB + ASA + 
actual interaction site 
ratio (9 residues) 
mix: spatial ly 42.8 (22 .3)  57 .8 (30.4) - 73 .3 (60.9) 
neighboringB + ASA + 
predicted interaction site 
ratio (9 residues) 
mix: sequence + ASA + 43 .2 (24.3 ) 5 5 . 8 (30.4) - 70. 1 (60. 1 )  
Flatness (window 1 1 ) 
hetero'} : sequence + ASA 45.0 (26.9) 5 5 .9 (32.8) - 69.7 (57.9) 
(window 9) 
homo lu: sequence + ASA 40.3 (2 1 .0) 5 5 .8 (28.9) - 73 .4 (62.2) 
(window 9) 
Hetero-mixed I I : sequence 42.4 (24. 1 )  54.9 (32 .8) - 7 1 .2 (5 8.9) 
+ ASA (window 9) 
Homo-mixed I 2 : sequence 38 .4 (2 1 .2) 5 5 .0 (28 .9) - 72.0 (62. 1 )  
+ ASA (window 9) 
feature vectorl = input feature vector of SVM 

recale= True _Positive/(True _Positive+False _Negative), precision3= 

True _ Positive/(True _Positive+False _Positive) 

The "success rate at whole sequence4" and the "success rate at surface5" mean the average per 

residue prediction ( interaction site or non-interaction site) accuracy 

out. The number of learning samples for each SVM with boosting (ten-fold cross 
val idation) was set to be the almost the same as that for SVMs without boosting 
( leave 1 /3 data set cross validation) . 
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Problem Definition 

3.1 NECESSITY OF PROMOTER IDENTIFICATION 

A promoter is a s ignal element on a DNA molecule that specifies control l ing region of 
a gene where RNA polymerase binds to initiate the transcription of the gene. RNA 
polymerase II (RNA pol II) in Eeukaryotic cel l  binds the promoter signals of al l 
protein coding sequences. But there is no universal occurrence of these signals .  So, it 
is not possible to predict the promoter efficiently using some mere predetermined 
signals. An approach that wil l  consider as many signals as possible which are not 
mutually exclusive wi l l  increase the chance of finding a promoter in a given sequence 
sign ificantly. 

A number of methods for the prediction of promoters, TSS (Transcription Start 
Signals) and TF (Transcription Factor) binding sites in eukaryotic DNA sequence 
presently exist [34,35 ] .  Although contemporary algorithms have much elevated 
predictive abi l ity than the prior approaches, it is almost certainly fair-haired to state 
that performance is sti l l  out lying from satisfactory. 

Many general purpose promoter prediction implementations of primary level could 
recognize just �50\0/0 of the promoters with a false positive (FP) rate of � 1 per 700-
1 000 bp [35] .  Then the use of Markov chain in promoter prediction tools by Ohler et 
al . [36] improved the results slightly but they acknowledged the same 500/0 of 
promoters from the dataset analyzed by Fickett and Hatzigeorgiou [35] ,  while having 
a false positive prediction rate of 1/ 849 bp. An additional promoter identification 
program, Promoter 2 .0, designed by Knudsen [37] appl ied a combination of neural 
networks and genetic algorithms. 

After the human genome had been sequenced, the efficiency of promoter prediction 
tools faced a major challenge . Promoter Inspector program [3 8] was the first software 
tool used to identify the promoters in human chromosome 22. It could identify �50\0/0 
of known promoters as genomic regions up to 1 kb in length by discriminating them 
from the exon, intron and 30 untranslated region (30UTR) sequences. Recently, Baj ic 
et al .  [39] has reported the Dragon Promoter F inder (DBF) program, which uses 
sensors for three functional regions: promoters, exons and introns. Judging by the 
authors' estimates, that approach has a higher accuracy than three other promoter 
finding programs which it was compared : NNPP 2 . 1 [40] Promoter2.0 [37] and 
Promoter Inspector [4 1 ] .  Another tool developed by Down and Hubbard [38] reported 
a novel hybrid machine learning method capable of predicting >50\% of human TSS 
with a specificity of>70\0/0. 

Moreover, one promoter prediction tool TSSPTCM has been trained and adapted for 
plants [42] . 

In the present study, with the aid of PromMachine machine learning tool ,  promoters 
are distinguished from the non-promoter sequences on the basis of abundance of some 
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characteristic 4mer motifs. The PromMachine is trained with 1 28 distinguishing 
4mers that can discriminate between promoter and non promoter. Using thi s  
knowledge the machine learning tool can efficiently decide whether a given sequence 
contains a promoter or not. With high sensitivity, specificity and accuracy this  
approach promises very high efficiency in  promoter prediction in Eukaryotic genomic 
sequences. Being appl icable for any reasonable length of given sequences thi s  
approach becomes a dynamic tool for finding promoters. 
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Proposed Method and Data Preparation 

4.1 DATA PREPARATION 

The promoter sequences are obtained from the Eukaryotic Promoter Database (EPD) 
[43]  as positive dataset. We have used 1 800 different vertebrate promoter sequences 
of length 300 bps contained in EPD Rel .65 and covering the region of 300 bps 
upstream of the transcription start site (TSS). We also col lected a set of non 
overlapping human gene sequences of length 250 bps each as negative dataset, from 
the GenBank [44] . The training of this system is made on these data. 

Dataset 
There were two datasets used in the development and testing of the promoter 
recognition algorithm: ( 1 )  the plant promoter sequence database and (2) the non­
promoter sequence database. 

Promoter sequence database 
To accomplish the task of RNA polymerase II promoter prediction, the plant promoter 
dataset was taken from PlantProm database [45 ]  which contains plant promoter 
sequences. The database serves as learning set in developing plant promoter 
prediction programs.  A total of 305 entries of plant promoter sequence with window 
size of 200 bp upstream and 5 1  downstream of TSS were obtained from PlantProm 
DB . To make the model applicable to predict promoters in Drosophila, Human, 
Mouse and Rat, promoter sequences are col lected from EPD as training data. The test 
data are col lected from the same source but these are independent of the training data. 

Non-promoter sequence database 
The non-promoter sequence database is extracted from Unigene database that belongs 
to EMBL. CDS are the best non promoter sequence. So, for every organism specific 
model, equal number of CDS sequence as the promoter sequence are used in the 
training process. 

4.2 PROPOSED METHOD TO IDENTIFY PROMOTER 

In this work I tried to find out the transcriptional elements which appear more 
frequently in promoters and less frequently in the non promoters. Promoter 
identification method can be divided into two categories, one knowing the absolute 
position of Transcriptional Start site and the other without any information about the 
absolute position of Transcriptional Start Site . The first method is relatively simple as 
one knows that the promoter sequences general ly lies within the upstream of a Gene, 
but the later one is much more complex as one doesn't know the exact position of 
Gene. So to use different positional features such as TAT A box and CpG Island are 
inherently difficult in these scenarios. My method doesn't take the absolute position of 
Transcriptional Start Site (TSS) into consideration. As a result I depended on the 
statistical analysis of different features in known promoter sequences .  
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Promoter and non promoter both contain A, C, T, G Taking this 4 nucleotide tetramer 
can be created .  To develop a - learning model we applied inductive inference where a 
model i s  derived from data and this model i s  further appl ied on new data. We used 
Support Vector Machine (SVM) to develop this  model as historically SVM is proved 
to be better than other techniques in the analyzing biological data [46] . 

My method is described as below:  
Step 1 :  Find all possible combination of ' A ' ,  'T' ,  'C '  and 'G '  taking al l  four at a time, 
this creates in total 256 different combinations. 

Step 2 :  
i .  Find fij where fij i s  the frequency of  ith combination in  /h known promoter sequence .  
i i .  Find fnij where fnij is the frequency of ith combination in /h sequence . 

Step 3:  
256 n 

i. Calculate � = I I jij where n is the total number of promoter 
i = l  j = l  

256 n 
ii. Calculate N� = I I fnij where n is the total number of non - promoter 

i = 1  j = 1  

Step 4: Calculate the absolute difference between the number of occurrences of  those 
256 possible combinations of nucleotides in known promoter and non-promoter 
sequences. So, we took Diffi= 1 Pi - NPj I, here Diffi is the absolute difference of the 
occurrence of a certain sequence in known promoter and non promoter. 

Step 5: Sort Diffi, in descending order and took 1 28 combinations of nucleotides for 
which the absolute difference is maximum. 

Step 6 :  Use the number of occurrences of these 1 28 combinations of nucleotides in 
the particular promoter and non-promoter sequence as a feature to train SVM on 
known promoter and non-promoter sequences. 

4.3 SVM MATHEMATICAL MODEL 

SVM, a supervised machine learning technique has been used for discriminating 
between promoter and non-promoter sequences. SVM classifiers solve multiclass 
classification problems using the structural minimization principle. Given a training 
set in a vector space, SVMs can find the best decision hyperplane, which separates 
two classes [47] . 

For a typical learning task P (X, y) = P (y 1 X) P (X), an inductive SVM learner aims 
to bui ld a decision function 
f L: X � {- I ,  + I }  based on a training set S train, which is  

fL = L(S train) 
Where : 
S train = ( X l  , y l  ), 

( X 2 , Y 2 ), . . .  , ( X n , y n ) 
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SVM are trained in a supervised manner on a col lection of promoter and non­
promoter sequences. 
It is necessary to select a kernel function and the regularization parameter in each 
Binary Classifier. Radial Basis Function (RBF) is selected as the kernel function. 
The SVM classification problem can be formulated in terms of a convex quadratic 
optimization problem as 

Maxlta,{�) ,t,a, aj y, Yj K(X" Xj )] ( 1 )  

In the above equation N i s  the total number of input vectors, Xj is any real number as 
the input vectors and Yj be their corresponding target class, which is either - l or 1 in 
binary classifier. 
A radial basis function (RBF) is a real valued function whose value depends only on 
the distance from the origin, so that 

o-(x )= ()�Ixl j) (2) 

or alternatively on the distance from some other point c, called a center, so that 

() (x, e)= o-�Ix - e l l) (3) 

Radial basis functions are typical ly used to build up function approximations of the 
form 

(4) 

where the approximating function y(x) is represented as a sum of N radial basis 
functions, each associated with a different center Cj, and weighted by an appropriate 
coefficient Wj . 

4.4 TRAINING WITH SVM 

The frequencies (fi) of these 1 28 characteristic 4-mer motifs are used to find the 
promoter (or Non-promoter) in a given sequence. As the values of fi are dependant on 
the length of a sequence, the values of fi will  be different depending on the length of 
the sequence and this complicates the comparison between two heterogeneous 
sequences. To solve the problem a new parameter, dj is defined by normalizing the fi 
with the fol lowing equation 
dj = {fi - min (f) , f2, . . . . . . . . . . . . . fl 2s) } /max (fl . . . . . . . . .  fl 28) . . . . . . . . . . . . . (equ5) 

Here, the numerical value of di ranges from 0 to 1 .  

To use these features for promoter prediction, SVM the most perfect supervised 
learning algorithm, is trained. For this purpose, equal numbers of promoter and non­
promoter sequences, collected from databases mentioned above are used as the 
training dataset. Being trained with the frequency patterns of the 1 28 characteristic 4-
mer motifs in known promoters and non-promoters, a mode! is built that can 
distinguish between promoter and non promoter in test sequences. 
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Testing: 

To substantiate the machine learning model, jackknife val idation could be the ideal 
process. But it is more time consuming and so not used in thi s  model .  Instead a 7fold 
cross validation is performed. Then, prediction test i s  done using independent test 
data. 
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Experimental Results and Comparative 

Analysis 

5. 1 PREDICTION ACCURACY 

In order to present the significance of n-mer sequences, a model is built using 305 
promoter and 305 non-promoter sequences. 

In order to test the prediction accuracy of the proposed model 1 00 sequences are 
selected randomly from Plant Prom DB and form EMBL that constitutes with 50 
known promoter sequences and 50  known CDS . These dataset are completely 
independent from the training set (Table 5 . 1 ) . 

Table 5. 1 :  Prediction done using the proposed model 

Predicted Total no. of True False False True Sensitivitl Specificityb 

Sequences Sequences Positive 
Promoter 50  43  

Non- 50  Nil 
Promoter 

Sensitivity a = 1 OO.TPI (TP + FN) 
Spec ific ity b = 1 OO.TNI (TN + FP) 

Positive Negative Negative 
Nil  7 N i l  
5 Nil  45 0 .86 

True Positive: When SVM detect a promoter as a promoter during training. 
True Negative : When SVM detect a non-promoter as a non-promoter during training. 
False Positive : When SVM detect a non-promoter as a promoter during training. 
False Negative : When SVM detect a promoter as a non-promoter during training. 

The model confidently predicts the promoters in these test data as it is  less prone to 
false positive and false negative prediction. The model shows a high level of 
sensitivity and specificity (Table 5 . 1 ) . The primary experimental results are 
summarized in Table 5 .2 in which percentage of correct value (for both cross 
validation test and prediction test) and correlation coefficient value is given. 

Table 5.2 : Result of Model built for promoter prediction 

Input data : Correctly Correctly Classifier Correlation 
Promoter and classified classified used for the coefficient 
non-promoter instances on instances on proposed 
sequences cross- 100 test Algorithm 

validation dataset (% ) 
data (% ) 

Proposed 84 .92 89 SVM 0.77 
Model 
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The correlation coefficient is also very high.  When the proposed model is trained with 
the 1 28 discriminating 4-mer sequences of Human, Drosophi la, Mouse and Rat and 
applied to predict the promoter in test data of corresponding organisms, we find very 
satisfactory results again in Table 5 .3 .  

Table 5.3: Cross validation accuracy of the model for various organisms 

Proposed Algorithm for Cross validation accuracy (7 
fold) 

Plant 83 . 8 1  0/0 
Drosophi la 94. 82 0/0 
Human 9 1 .25 0/0 
Mouse 90 .77 0/0 
Rat 82 . 35  0/0 

The 7 fold cross val idation accuracies are very significant in all the test organisms. It 
indicates the universal ity of the model for all eukaryotes. The high percentage of 
correct value, correlation coefficient for this proposed model clearly indicates that 
calculated frequencies of 4-mer sequences are capable of discriminating between 
promoter and non-promoter regions. 
Complexity of the proposed model is 0 (4dMN) 

5.2 COMPARISON WITH EXISTING METHODS 

There are various algorithms used for promoter prediction. Using these algorithms, 
some widely used promoter prediction tools have been developed, e.g.  Soft Berry, 
Dragon Promoter Finder, Neural Network Promoter Prediction, Promoter 2 .0  
Prediction Server and Promoter Scan. 
However, the model proposed here promises even better performance than the most 
successful tools of thi s  day. The results shown in Table 5 . 4  clearly indicate that the 
prediction accuracy of the model is relatively very h igh in comparison with other 
tools. 

Table 5.4 :  Program accuracy: comparisons with existing methods 

Program NNPP Soft ProScan Dragon Promoter Prom-
Name (threshold Berry version Promoter 2.0 Machine 

0.8) (TSSP) 1 .7 Finder Prediction 
version 1 .4 Server 

Sensitivity 68 88 0 1 2  0 86 
(%)a 
Specificity 76 90 1 00 1 00 78 90 
(%)b 
Correlation 0 .44 0 .78 * *  0.25 * *  0 .77 
coefficient C 

* *  Infimty 
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. (TP xTN)-(FN x FP) 
' Correlation coefficient = --;:;:===r==7======�=r===�=;===� �(TP+ FN)x{TN + FP)x{TP+ FP)x{TN + FN) 
There are a number of superior features that have made our proposed model better 
performer than any other tools  such as the use of large numbers ( 1 28) of 
discriminating features between promoters and non promoters and the exploitation of 
the most successful supervised learning system SVM. Other prominent promoter 
prediction tools use either statistical approach or Neural Network. However, SVM has 
outperformed both of these approaches in pattern matching and supervised learning. 
Besides, these approaches use only l imited numbers of features as the promoter 
signals such as TAT A box or Inr etc. On the other hand, the proposed model uses 
SVM to detect the most number of signals to date to declare whether a sequence is 
promoter or not. These superior components of my approach have made it a better 
tool . 
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Conclusion & F urtber Scope 

6. 1 CONCLUSION 

The triumphant prediction of promoters with high accuracy using frequency 
distribution of n-mer sequences noticeably designates that the novel method has an 
assurance as an approach for successful Eukaryotic promoter prediction. The principal 
objective of this project was to develop an efficient tool that can discriminate between 
promoter and non-promoter in an unknown sequence with proper accuracy. The 
highly accurate results of promoter prediction with our approach in Plant, Human, 
Drosophila, Mouse and Rat (Table 5 .3)  have clearly proved the validity of using 
frequency distribution of 4-mers in discrimination between promoter and non 
promoter. 

However, though the approach is very much efficient in predicting the presence of 
promoter in a given sequence, it cannot locate the position when TAT A box is not 
present. But this challenge will  be met very soon if other signals can be characterized 
for specific position . So, it is expected that the approach proposed here would be a 
highly useful and efficient tool to meet the demand of the molecular biologists. 

6.2 FURTHER SCOPE 

This paper focused on identifying promoter sequences. Same algorithm can be applied 
to identify the GENE sequence within a DNA. Combining the novel concept of 
identifying promoter with the gene identification will surely be of high research 
interest in the biological research domain. Our future work will try to focus on this 
research area. 
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