

ANALYZING EFFECT OF FEATURE SELECTION

IN SOFTWARE FAULT DETECTION

Shamse Tasnim Cynthia

ID: 2016–1–60–113

Md. Golam Rasul

ID: 2016–1–60–080

A thesis submitted in partial fulfillment of the requirements for the

degree of Bachelor of Science in Computer Science and Engineering

Department of Computer Science and Engineering
East West University

Dhaka-1212, Bangladesh

December, 2019

Declaration

We, hereby, declare that the work presented in this thesis is the outcome of the investi-

gation performed by us under the supervision of name of our supervisor, Professor,

Department of Computer Science and engineering, East West University. We also

declare that no part of this thesis has been or is being submitted elsewhere for the award

of any degree or diploma.

. .

(Dr. Shamim H Ripon) (Shamse Tasnim Cynthia)

 ID: 2016-1-60-113

.

(Md. Golam Rasul)

ID: 2016-1-60-080

i

Abstract

The quality of software is enormously affected by the faults associated with it. Detection of

faults at a proper stage in software development is a challenging task and plays a vital role in the

quality of the software. Machine learning is now a days a commonly used technique for fault

detection and prediction. However, the effectiveness of the fault detection mechanism is

impacted by the number of attributes presented in the dataset. This paper thoroughly gives the

importance to compare between different machine learning approaches and by observing their

performances we can conclude which models perform better to detect fault in the selected

software modules and investigates the effect of various feature selection techniques on software

fault classification by using NASA’s some benchmark publicly available datasets. Various

metrics are used to analyze the performance of the feature selection and classification

techniques. The experiment discovers that some particular classifiers can detect the presence of

the faults more effectively and by selecting the best features and solving the class imbalance

problem can ensure better quality of the software.

ii

 Acknowledgment

All praise, gratitude and thanks are due to omnipotent, omnipresent and omniscient Allah, who

has created to conduct the research work successfully.

The authors would like to express their sincere appreciation, deepest sense of gratitude and

immense indebtedness to their honorable thesis supervisor Dr. Shamim H Ripon, Professor,

Department of Computer Science and Engineering, East West University, Bangladesh, for their

systematic planning, painstaking and scholastic guidance, encouragement, inestimable help,

valuable suggestions, loving care and gratuitous labor and all kinds of support in conducting and

successfully completing the research work and in the preparation of the manuscript.

The authors would like to express their heartiest gratitude and profound respect to Dr. Taskeed

Jabid, Chairperson & Associate Professor, Department of Computer Science and Engineering,

East West University, Bangladesh, for his kind co-operation during the study period and helping

us in various steps of this work.

The authors would like to extend their heart-felt thanks and deepest appreciation of gratitude to

all the teachers of Department of Computer Science and Engineering, East West University,

Bangladesh, for their guidance, valuable suggestions, compassionate help and continuous

encouragement throughout the period of research work.

Last but not least, authors feel heartiest indebtedness to their beloved parents, brother, sisters for

their patient inspiration, sacrifice, blessing and never ending encouragement.

Shamse Tasnim Cynthia

December, 2019

Md. Golam Rasul

December, 2019

iii

iv

Table of Contents

Declaration of Authorship i

Abstract ii

Acknowledgement iii

Table of Contents iv

List of Figures v

List of Tables vi

Chapter 1 Introduction 2

 1.1 Introduction ……………………………………………………………….. 2

 1.2 Problems and Motivation …………………………………………………. 2

 1.3 Objectives ………………………………………………………………… 4

 1.4 Contribution ………………………………………………………………. 5

 1.5 Outline ……………………………………………………………………. 5

 1.6 Publications ………………………………………………………………. 6

Chapter 2 Literature Review 7

 2.1 Fault Detection Analysis ………………………………………………….. 7

 2.2 Feature Selection …………………………………………………………. 8

 2.3 Class Imbalance Problem ………………………………………………… 9

v

Chapter 3 Dataset Overview 10

 3.1 Dataset Overview …………………………………………………………. 10

Chapter 4 Proposed Model 13

 4.1 Proposed Model …………………………………………………………... 14

 4.2 Algorithms and Techniques ………………………………………………. 14

 4.2.1 Algorithms Used …………………………………………………... 15

 4.2.2 Feature Selection Techniques ……………………………………... 17

Chapter 5 Result Analysis 17

 5.1 Classification Accuracy …………………………………………………... 20

 5.2 Applying Feature Selection Techniques ………………………………….. 21

 5.2.1 Relief Test …………………………………………………………. 22

 5.2.2 Chi Square Test ……………………………………………………. 22

 5.2.3 Information Gain ………………………………………………….. 23

 5.2.4 Feature Importance ………………………………………………... 23

 5.2.5 Chi Square Test of Independence …………………………………. 27

 5.3 Recall Value Comparison ………………………………………………… 29

 5.4 Rules Generation …………………………………………………………. 29

 5.4.1 Rules Generation for Selected Attributes Without Applying ……...

 Feature Selection Techniques

31

 5.4.2 Rules Generation for Selected Attributes After Applying …………
 Feature Selection Techniques

33

Chapter 6 Managing Class Imbalance Problem 33

 6.1 Class Imbalance …………………………………………………………... 34

 6.2 Techniques to sample dataset …………………………………………….. 34

 6.2.1 Random Under Sampling …………………………………………. 34

 6.2.2 Random Over Sampling …………………………………………... 34

 6.2.3 Smote ……………………………………………………………… 35

vi

Chapter 7 Tool Implementation 37

 7.1 Tool Description ………………………………………………………...... 37

Chapter 8 Tool Implementation 42

 8.1 Summary ………………………………………………………………….. 42

 8.2 Future Work ………………………………………………………………. 43

Bibliography 44

List of Publications 49

vii

List of Figures

3.3 Description of the attributes …………………………………………………... 12

4.1 Proposed model for our experiment …………………………………………... 14

5.1 Probability of Classes vs LOC_COMMENTS ……………………………….. 19

5.2 Probability of Classes vs NODE_COUNT …………………………………… 19

5.3 Probability of Classes vs LOC_CODE_AND_COMMENTS ……………… 20

5.4 Accuracy of different datasets before and after applying feature selection … 25

5.5 Accuracy comparison between 10 features’ average accuracy and 20
 features’ average accuracy ……………………………………………………..

26

5.6 Recall values for Decision Tree ……………………………………………….. 27

5.7 Recall values for Random Forest ……………………………………………… 27

5.8 Recall values for Naïve Bayes ………………………………………………… 28

5.9 Recall values for Logistic Regression ………………………………………… 28

5.10 Recall values for decision ANN ……………………………………………… 29

6.1 Visual Representation of sampling techniques …………………………........... 33

7.1 GUI of feature selection in software fault detection …………………………... 37

7.2 Selecting a classifier and a technique …………………………………………. 38

7.3 Selecting a dataset …………………………………………………………….. 39

7.4 Dataset statistics ……………………………………………………………… 39

7.5 Graphical representation of the dataset ……………………………………….. 40

7.6 Representation of accuracy, confusion matrix and AUC ……………………... 41

7.7 Display of ROC curve ………………………………………………………… 41

viii

List of Tables

3.1 Dataset overview ……………………………………………………………… 10

3.2 Source of the datasets …………………………………………………………. 11

5.1 Accuracy of the classifiers without applying cross validation ……………….. 18

5.2 Accuracy of the classifiers after applying cross validation …………………… 18

5.3 Attribute statistics …………………………………………………………….. 20

5.4 Feature selection by Relief test and performance evaluation ……………….... 21

5.5 Feature selection by Chi Square test and performance evaluation …………… 22

5.6 Feature selection by Information Gain and performance evaluation ………… 23

5.7 Feature selection by Chi Square Test of Independence and performance

 Evaluation ……………………………………………………………………

23

5.8 Feature selection by Feature Importance and performance evaluation …......... 24

5.9 Rule Generation ………………………………………………………………. 30

5.10 Generating rules using Apriori ……………………………………………… 30

6.1 Comparison among three sampling techniques ……………………………… 35

 2

Chapter 1

Introduction

In this era, we cannot think of our life without software. In every aspect of life, we have software

to facilitate our everyday battles and to accelerate our works. So fault in software can emerge some

big and complex issues in the banking, medical, industrial sectors if there exist any defects in the

software, the outcome is uncountable which can even cost individuals’ lives and huge financial

loss [1]. This makes the software system more complex than before and some of the software

system have to be delivered with least or non-negligible number of faults possible. With the

increasing demand of large and complex software in various sectors, the probability of having

software defects has been increased and traditional quality assurance methods are not sufficient to

overcome all software defects in such huge systems So detecting faults in the software has turned

into a genuine subject to consider. Defect prediction helps in identifying the vulnerabilities in the

project plan in terms of lack of resources, improperly defined timelines, predictable defects etc. it

can help organizations to fetch huge profits without getting delayed on schedules planned or

overrun on estimates of budget. It helps in modifying the parameters in order to meet the schedule

variations.

1.1 Problems and Motivation

Faults can be defined as a basic flaw in a product framework. Faults are often generated for

misunderstanding, lacking knowledge in the working area or even for the deadlines. The process

of software testing was mainly introduced to examine if there are any defects remain in the

software. Through numerous steps and techniques, the tester tries to detect the faults. Often the

defects are found in the last stage of SDLC. The early stage fault prediction [2] can cause less

effort and money however when faults are distinguished at the last stage it requires high repair,

cost and the quality of the software reduces. Several studies reveal that 80% of the software faults

occur from 20% of the modules and defect dree portion covers the rest half of the module [3].

Software faults demand the rework process that has negative impact on for Software Quality

Assurance [4]. Ability in detecting software faults mostly assist software developers in the testing

 3

phase about maintaining software standards [5]. So predicting software faults at the early stage of

software development can support the development of more efficient and reliable software within

the stipulated limited time and cost [6].

There are numerous perspectives which may prompt software defects in its software life

cycle, such as Software requirements, software design, software coding and software testing and

so on. However, software defects which are delivered during the phases of software requirements,

software design and software testing, will at last expressed in software Source Codes. Therefore,

detecting software defect by software source codes is the most well-known method to predict

software defect [7]. The most frequently metric that researcher used to predict the software fault in

software source codes is Size and Complexity metrics. Size and complexity metrics is an

conceptual articulation of software source codes complexity, such as line of code, cyclomatic

complexity and design complexity and so on [8]. Accurate prediction of faulty software modules

enormously helps in lessening testing effort, by helping software testers to focus on the flawed

modules. As we are probably aware that software testing is a very exorbitant and timing consuming

activity. In software development process testing usually requires 40% of the whole project

schedule [9]. There is no intermediate technique to quantify the fault proneness [8], [9]. Based on

software metrics, faulty software modules are detected using software defect prediction module.

Unfortunately, there is no generic technique for estimating software modules as faulty or non-faulty

[10].

For detecting fault in the software, Machine learning techniques have been broadly

utilized. Machine learning is the scientific study of algorithms and statistical models. This is the

science of getting computers to operate and generate results without explicit instructions. A set of

training data and testing data is required for the machines to make prediction or decisions and gives

results without instructions given to it. For this, software researchers have found that defect

prediction using machine learning approaches is practical and useful [11]. As this technique

automatically predicts of possible faulty environment, software developers can fix those infirmities

in early stage of developing a software and put emphasize on software’s main development. In [12]

various types of fault have been identified and the preventive approach was applied using the

Learn-to rank algorithm. For increasing the performance, the back-propagation technique is

attached with LRA approach for enhancing its performance. In this paper, we apply different data

mining approaches and after analyzing certain results, the fault prediction of software is improved.

This not only saves the time but also reduces software’s infrastructure cost.

Feature selection is one of the most significant techniques for any kind of data analysis.

Features are mainly referred as the attributes which are given in a dataset and have strong

correlation with the class attribute [13]. A random dataset containing lots of features needs to

extract the most important features for better analysis otherwise the result which comes from

classification, prediction or regression may not be the expected one. All the features in a dataset

are always not the important or relevant to the classification. They may contain irrelevant, duplicate

 4

and useless data that will not participate in any of the prediction or classification system rather,

these type of data can consume extra processing time and affect the quality of the analysis result.

So the main aim of feature selection in a dataset is to select the essential features which will help

to improve the fruitfulness of a model. The feature selection techniques not only increase the

accuracy and efficiency of a classifier but also decreases the chance of overfitting, reduces the

dimensionality and eliminates noise [14] [15]. In addition, it can seek out useful information

deliberately and lessens the effect of variance in the result. Proper selection of features can help

researchers looking for the exact fault in the model. Again when the most essential features are

selected, the reduces dimensionality of a dataset boosts the performance of some algorithms,

delivers more accurate results in the less amount of time. Most of the feature selection techniques

extract features that ranges from sub-optimal to near optimal solutions [16]. By ranking the features

with different score, feature selection techniques reach to near optimal solutions.

Another significant issue that should be tended to for making fault proneness prediction process

increasingly successful is to manage imbalanced datasets. Normally data in reality is imbalanced.

Class unevenness implies that dataset contains countless examples for a specific class then different

classes exist in that dataset. The class imbalance issue is deceptive and ever present in the dataset

for fault proneness prediction because of the way that number of defective modules cases is not

exactly number of non-faulty modules instances. The class imbalance issue commonly happens in

classification problem. Because of irregularity classes the vast majority of datasets are

exceptionally slanted toward a particular class of occurrences. In such cases, due to imbalanced

dataset the productivity of fault detection is gravely trouble. In this manner, there is a need to adjust

the dataset so as to improve the productivity of prediction model. Outlier is a perception that seems,

by all accounts, to be digress from different examples of test in which it happens for example a

perception that is conflicting with the rest of datasets. Presence of outliers in the datasets utilized

for software defects surrenders frequently sway the presentation of defect of prediction models.

1.2 Objectives

Our objectives in this project are as follows,

 To compare the accuracies of different machine learning algorithms and providing a

comparative examination of these algorithms

 To distinguish the actualities which are causing software being defective or not. The work

exhibited in the paper also aims at observing which attributes are responsible more in the

classification of software fault prediction.

 To consider the significance of feature selection in prediction and classifying software

faults, the work aims at investigating the effect of various feature selection techniques upon

the performance of various classification algorithm.

 5

 To apply several feature selection techniques to some used fault prediction datasets and

then apply classification and predictive techniques on the datasets having only those

features selected earlier.

To find the solution of the problem of class imbalance problem is also taken care of as we need to

balance the dataset in order to make our model more efficient and the comparison between the

balanced and imbalanced class has also been shown.

1.3 Contribution

We have made the following contribution in this project:

 We have collected a publicly available dataset, applied multiple classification models and

rule induction techniques

 We have observed which algorithm performs better by calculating accuracy and which

attributes are necessary for generating rules.

 For each dataset, all the feature selection techniques are applied and relevant features are

selected for each type of technique.

 Classification algorithms are then applied to the selected features obtained from each

feature selection techniques.

 For comparative analysis, experiment has also been conducted considering all the features

in the dataset and then compare the result with that of the selected features.

For balancing the dataset, we have applied SMOTE and comparative analysis represented the

improvement of the evaluation metrics after balancing the datasets

1.4 Outline

The report is organized as follows:

 Chapter 2 gives a literature review of software fault detection, feature selection and class

imbalance problem of these datasets.

 Chapter 3 gives a brief overview of the datasets which are being used in the experiments.

 Chapter 4 gives a model of our proposed works and illustrated it in a diagram.

 Chapter 5 gives a brief description of the result analysis and the comparison between the

results.

 Chapter 6 gives a brief description of the class imbalance problem and how this problem

can be solved.

 6

 Chapter 7 gives an overview and the description of the tool that we have implemented to

make the experiment easy and effective.

 Finally, in Chapter 8 we give a summary of this thesis and outline our future plans:

1.5 Publications

The following international conference papers have been published and presented from the project:

1. Shamse Tasnim Cynthia, Md. Golam Rasul and Shamim Ripon, Effect of Feature Selection

in Software Fault Detection, 13th Multi- disciplinary International Conference on

Artificial Intelligence, November 17-19, 2019. Kuala Lumpur, MALAYSIA, 2019.

Springer International Publishing, LNAI 11909. https://doi.org/10.1007/978-3-030-

33709-4_5

2. Shamse Tasnim Cynthia and Shamim H Ripon, Predicting and Classifying Software

Faults: A Data Mining Approach, 7th International Conference on Computer and

Communications Management (ICCCM 2019) Bangkok, Thailand, July 27-29, 2019.

(ACM Indexed). https://doi.org/10.1145/3348445.3348453.

https://doi.org/10.1007/978-3-030-33709-4_5
https://doi.org/10.1007/978-3-030-33709-4_5
https://doi.org/10.1145/3348445.3348453

7

Chapter 2

Literature

Review

2.1 Fault Detection Analysis

For predicting defects in software, various techniques have been developed such as linear

regression, discriminate analysis, decision trees, neural networks etc. For software fault prediction

different data mining classification techniques have been surveyed by Yuan Chen, et.al [17]. A

new model based on Bayesian network and PRM to predict the software defect and manage have

been proposed by them. Their Nu Phyu [18] reviewed on various classification techniques such as

decision tree induction, Bayesian networks, k-nearest neighbor classifier, case based reasoning,

genetic algorithm and fuzzy logic techniques. Finding of the results is not satisfactory on which is

the best classifier. A set of interacting methods to large numbers of makers has been produced by

several of the classification methods caused a potential risk picking up randomly associated

markers.

 Issam H et.al [19] have proposed a classifier called two variant ensemble learning classifier

which shows that greedy forward selection performs better comparatively than correlation forward

selection. For the multiple datasets, further they proposed a model called APE with greedy forward

selection to generate higher AUC measures. The results shown stronger robustness to redundant

and irrelevant features. For imbalanced datasets R , enqing Li and Shihai Wang [20] predicted

defects. On imbalanced datasets of NASA’s MDP C4.5, SVM, KNN, Logisitc regression, Naïve

Bayes, Adaboost and smooth boost models were tested. Smooth boost found to be the best defect

predictor when compared to others when results were found out.

8

2.2 Feature Selection

Oinbao Song et. al [21] proposed a framework model to follow-up the MGF on defect prediction

using Scheme evaluation and defect prediction for feature selection. For comparing the

performance, only three algorithms Naive Base, J4.8 and OneR were used. ROCUS for software

defect prediction has been used by Jiang et al. [22]. For detecting the software fault two vital issues

were addressed by the authors. They proposed a disagreement-based semi-supervised learning

method to exploit the abundant unlabeled data but higher misclassification rate is the limitation for

this technique for better prediction.

 Recently two types of techniques called evolutionary and swarm intelligence evolved and

therefore not much of research could have been done on these techniques w.r.t. defect prediction.

Relationship of software quality and defects with some mining techniques like Logistic Regression,

C4.5, Association Rule Mining, Random Forest, Naïve Bayes, Artificial Neural Network, Fuzzy

Programming and Genetic algorithm to conclude that data mining techniques helps eliminate

vestigial defects has been studied by Arun Singh et.al. [23]. Different techniques about Hybrid

combinations have also evolved in years and have almost always performed better that the original

technique itself. A new model defined by him et.al. [24] by combining advantages of Particle

Swarm Optimization and SVM: P_SVM and applied on the JM1 dataset of NASA, with 10CV.

The result of the comparison with Back-propagation neural network, SVM and Genetic Algorithm

SVM (GA-SVM) showed that P-SVM had maximum accuracy. NB, MLP and Votinf Feature

intervals (VFI) classification of 5 datasets and results show that combination of these classifiers

has higher probability of fault detection specifically for embedded systems which has been used

by Atac Deniz Oral et. al. [25].

 By selecting important attributes Using five classifiers: IBK, KStar, LWL, Random Tree

and Random Forest, Misha Kakkar et al. [1] tried to build a framework. For evaluating the

performance of these classifiers the values of accuracy and ROC was used.

ChiSquaredAttributeEval and CorrelationAttributeEval ranked the attributes based on their

individual evaluation and Attributes selection was done through CfxSubsetEval evaluator.

Different feature selection techniques have been combined in a hybrid feature selection approach

which has been introduced by Lina Jia [26]. Chi Square, Information Gain and Pearson Correlation

Coefficient techniques are used. For finding the correlation among the attributes Qiao Yu et al. [27]

proposed a feature selection approach on the basis of similarity measurement for software defect

prediction. Feature list is generated in descending order by updating the feature weights and by

sorting them according to their rankings. Finally, on the selected dataset for the detection of faults,

K-nearest model classifier is applied.

 A feature selection framework named MICHAC which stands for Maximal Information

Coefficient with Hierarchical Agglomerative Clustering was proposed by Zhou Xu et al. [28].

9

This framework fetches one feature from each feature subset groups to eradicate the irrelevant

features. For evaluating the performance of the model built with selected featured datasets, three

different classifiers and four performance metrics were used. Bat-Based Search Algorithm was

used by Dyana Rashid Ibrahim et al. [4] in their work for the feature selection purpose

2.3 Class Imbalance Problem

Romi Satria Wahono et al. in their research [16] gave priority on imbalance nature of the NASA

dataset on software defect prediction and for feature selection. To predict the defects M. Anbu et

al. in their research [29] used Genetic Algorithm which has been used onl Firefly algorithm for

feature selection and classifiers like Support Vector Machine, Naïve Bayes and K- nearest

neighbor.

 Considering the fact of class imbalance problem present in the datasets, a big number of

defect prediction models have been introduced. For selecting an appropriate attributes and a

technique for dealing with imbalanced class, T. M. Khoshgoftaar et. al. [30] proposed a process

that includes a technique. They concluded that selection of appropriate metrics is very vital. For

sampling minority class examples, L. Pelayo and S. Dick used SMOTE technique. After analysis

of the result by applying SMOTE resampling, an improvement of 23% in average geometric mean

of classification accuracy [31]. To handle the software fault prediction problem with highly

imbalanced datasets, Z. Li and M. Reformat used SimBoost machine learning method. Their

proposed methods reasonably reduce the effect of imbalanced datasets after experiment the result;

however, the prediction for balanced dataset was not accurate. they proposed fuzzy label for

classification [8], In order to deal with this issue. S. Lessman et.al. investigated multiple

classification models over 10 public domain software datasets from NASA MDP repository. the

significance of particular classification may possibly be less supposed as there could be no

noteworthy differences detected in the performance of top 17 classifiers [32] was specified by their

experimental result.

 However, in our work we have tried to apply five feature selection processes on five

different datasets to select the most relevant and essential features and five classifiers are also used

in prediction of the software defects along with solving the class imbalance problem by applying

five sampling techniques.

10

Chapter 3

Dataset Overview

3.1 Dataset Overview

We have used NASA MDP dataset for our research. This dataset is a set of 96 datasets among

them 13 datasets have been provided by NASA [33] and we have taken 8 datasets to do

experiment. These datasets have been used commonly for software fault prediction though some

preprocessing of these data are needed for suitable and errorless defect prediction [34]. Table 3.1

shows the name of the selected datasets, total sample number, the total number of defective and

not defective values of each dataset and the language used on them. The attributes in these datasets

are mostly of numerical values except for the class attribute which is a polynomial one.

TABLE 3.1: Dataset Overview

Dataset Total Sample Defective Not defective Language Used

CM1 344 42 302 C

KC1 2096 325 1771 C++

JM1 7782 1672 6110 C

PC1 759 61 698 C

KC3 200 36 164 Java

MW1 264 27 237 C

PC4 1399 178 1221 C

PC2 1585 16 1569 C

The software presented in each data is from different projects of NASA [20]. Table 3.2 shows the

source of the datasets.

11

TABLE 3.2: Source of The Dataset

Dataset Notes

CM1 spacecraft instrument

KC1 storage management for receiving/ processing ground data

JM1 a real time predictive ground system

PC1 an earth orbiting satellite

KC3 storage management for ground data

MW1 zero gravity experiment related to combustion

PC4 flight software for earth orbiting satellite

PC2 flight software for earth orbiting satellite

 The datasets consisted of several and great numbers of attributes. These attributes mainly

ensure the quality of metric data program. Each data set is consisted of system or subsystem that

represents static code metrics and each module are comprised of fault data. a function, procedure

or method is referred as the module. The static code metrics record includes lines-of-codes (LOC)

count, Halstead and McCabe based measures. The form of error count metric is taken by the

primary fault data to calculate the number of error reports which was issued for each module bua

a bug tracking system reportedly. The details which are given at the original NASA MDP

Repository, it is not clear exactly how these error reports were mapped back to the individual

modules. However, it was stated that, “if a module is changed due to an error report (as opposed

to a change request) then it receives a one up count. It cannot receive more than a one up for a

given error report”. It was also stated that “the error count metric describes the number of changes

due to errors”. The source code explaining the origination for these data sets is wholely closed

source, which makes the validation of data integrity more difficult. A huge amount of researches

has been conducted over the last decade containing these facts. Fig 3.1 illustrated the description

of the dataset attributes.

12

Fig. 3.1: Description of the attributes

13

Chapter 4

Proposed Model

Considering the significance of early fault prediction in software, our work aims to investigate

the proper classification, identification of relevant attributes and solving the class imbalance

problem. Fig 4.1 shows the complete picture of our proposed model we have done in our project.

To do so firstly several classifiers are taken in order to classify the defects in the software. The

classification is tested using cross validation and without cross validation. Five types of classifiers

are taken, then the model is constructed and by evaluating the model, the results are measured and

performance of different classifiers are compared to see which classifier can give us the best

result.

 The relevant feature selection is one of the major tasks to do. So we took 5 datasets and

applied 5 feature selection techniques. The top 10 and top 20 features are selected which are

turned into different subset of the actual dataset. After applying the selection processes five

classifiers are implemented on the top 10 and top 20 datasets to check which subset of the dataset

works better as there might be chances that the relevant features are not considered in any dataset.

Then with the help of performance metrics the results are compared to check if the selected

features are actually the important one.

 The class imbalance problem of NASA dataset in another important issue that needed to

be solved. In order to do that three sampling techniques are taken to solve the class imbalance

problem. After applying these three techniques, on classifier is applied on each of the balanced

dataset and the result contained which technique worked better for sampling the dataset and can

improve the efficiency of the model to detect the software defects accurately.

14

Fig. 4.1: Proposed model of our experiment

4.1 Algorithms and Techniques

There are several algorithms and techniques are applied to achieve our expected outcome.

4.1.1 Algorithms Used

For implementing the proposed methodology, we have used five classifiers [35]. They are: a)

Decision Tree, b) Naïve Bayes, c) Support Vector Machine, d) Support Vector Machine(PSO),

e) Adaboost [36], f) Logistic Regression, g) Random Forest and h) Artificial Neural Network.

Some details of these classifiers are described below:

Decision Tree: Decision Tree [37] is a tree-like collection of nodes plan to produce a

decision on values associating with a class or an estimate of a numerical target value. Rules are

generated for each attribute. In our research, we have used the information gain criterion. The

maximal depth of the tree is 10, confidence is 0.1, minimal gain 0.01 and minimal leaf size is 2.

Naïve Bayes: Naïve Bayes [38] is a machine learning algorithm. It is probabilistic and

used for classifying tasks. When the value of the label attribute is given, Naïve Bayes assumes

that the value of any attribute is independent of the value of any other attribute.

Support Vector Machine: Support Vector Machine [39] is a supervised learning model.

15

It is an associated learning algorithm that inspects data which are used for classification and

regression analysis [40]. The parameters are: dot kernel type, C parameter is 0.00 and

convergence epsilon is 0.001.

Support Vector Machine(PSO): This is Support Vector Machine learner which uses

Particle Swarm Optimization [41] for optimizing a problem by repeatedly trying to improve a

solution with regard to a given measure of quality. The radial kernel type is used here. C

parameter is 0.0, kernel gamma is 1.0, inertia weight is 0.1, the local best weight is 1.0 and the

global best weight is 1.0.

Adaboost: Adaboost(Adaptive Boost) is a boosting algorithm. It is a nested operator and

it has subprocess. The subprocess consists of a learner and given an example set, it generates a

model. It emphasizes on classification problems and tries to convert weak classifiers into a strong

one. We have used 10 iterations for our method.

Logisitc Regression: Logistic regression [42] is a linear classifier which is probabilistic.

The parameters are a weight matrix w and a bias b. With enabling the system to estimate

categorical results it takes help of a group of variables which are independent. The equation for

weight is updated according to the value and with this the average cost value is calculated.

Random Forest: Random forest [43] is an ensemble classifier which is being used to

utilize a particular number of classifiers to work together so that they can identify class labels for

instances which are unlabeled. The high accuracy value of this approach proved its superiority

and effectiveness of the with imbalanced dataset. To resolve class imbalance problem, this

classifier provides several techniques.

Artificial Neural Network: An Artificial Neural Network [44] is an engineering approach which

is of biological neuron. Many inputs and one output are associated with it. Simple processing

elements consists which is large in number basically consists the ANN. These elements are

interconnected with each other and they are layered also.

4.1.2 Feature Selection Techniques

The Chi-Square test is introduced by Karl Pearson (1900) which is a statistical hypothesis test

that determines the goodness of fit between a set of observed and expected values [45, p. 1]. It is

a nonparametric test that is used for testing the hypothesis of no association between two or more

groups, population or criteria and to test how well the observed distribution of data fits with the

distribution that is expected [46].

The formula for Chi-square is:

𝑋𝑐
2 = ∑ (𝑂𝑖−𝐸𝑖)

2

𝐸𝑖

𝑛

1

 Where 𝑋𝑐
2 = Chi-square test, c = degrees of freedom, O = observed value(s), E = expected

value(s).

16

As mentioned already, Karl Pearson (1904) introduced Chi-square test of independence

which is used to detect if there is a significant relationship between two nominal (categorical)

variables [45]. Each category’s frequency for one nominal variable is compared with the

categories of another nominal variable. Each row of the data in a contingency table represents a

category for one variable and each column represents a category for other variable [47].

The formula for Chi-square test of independence is:

𝑋2 = ∑ ∑
(𝑂𝑖𝑗−𝐸𝑖𝑗)

2

𝐸𝑖𝑗

𝑐

𝑗=1

𝑟

𝑖=1

 Where X2 = Chi-square test of independence, O = observed value(s), E = expected value(s),

r = number of rows, c = number of columns.

Information Gain is a measure of the change of entropy which reduces the uncertainty

of the result. Entropy gives the measure of impurity of the classes. The value of the entropy should

be less for getting the best output. When a node in a decision tree is used for partitioning the

training instances into smaller subsets, the value of the entropy changes. Information gain

specifies the importance of an attribute and decides the ordering of the attributes in the nodes of a

Decision Tree.

𝐺𝑎𝑖𝑛(𝑇, 𝑥) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑇) – 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑇, 𝑥)

Relief is a feature selection algorithm which uses a statistical method and avoids heuristic

research. The algorithm inspired by instance-based learning. It needs linear time for the number

of given features and the number of training instances regardless of the target concept to be

learned.

 From given training data, sample size, and a threshold of relevancy, Relief finds those

features that are statistically relevant to the target concept. Relief collects the total number of

triplets of an instance, its Near-hit instance and Near-miss instance. Euclidian distance is used for

selecting Near-hit and Near-miss. A routine is also called by Relief to update feature weight vector

for every triplet and finds the average feature weight vector Relevance (of all the features to the

target concept) and those features whose average weight is above the given threshold are selected

by Relief [48].

Feature Importance returns a score for each feature and based on that score, the features

which have higher score get more privilege towards the output variable. It uses ensembles of

decision trees which computes the relative importance of each attribute.

 We have used extra tree classifier (ETE) which randomizes certain decisions and subsets

of data to minimize over-learning from the data and overfitting. One great advantage of extra tree

classifier over Decision Tree (DT) and Random Forest (RF) is the lower variance whether DT and

RF have higher variance. Extra Trees like RF, builds multiple trees and splits node using random

subsets of feature but the key difference with RF is the randomness comes from the random splits

of all observations.

17

Chapter 5

Result Analysis

In this section, we investigate the performance of the proposed model based on the algorithms

and techniques which are considered to apply.

5.1 Classification Accuracy

For software fault prediction, it is not enough to obtain which model gives higher accuracy. So it

is needed to correctly classify the defective and not defective classes for ensuring whether a

software is going to be fault-prone or not as classification [49] of the important data can distinguish

categories or classes. That is why we have tried to compare the classification models to observe

which works better [50]. Different types of classification models have been used throughout the

researches in different times [51].

For comparing among the machine learning algorithms [52], accuracy is the most famous

one. It is calculated by summation of true positive and true negative divided by total instances.

Table 5.1 and Table 5.2 shows the comparison between accuracy calculated with 10-fold cross

validation and without cross validation. It clearly shows that decision tree and Adaboost models

give the best results recording highest accuracy of 98.55% and 100% from dataset CM1

respectively.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)

18

TABLE 5.1: Accuracy of the classifiers without applying cross validation

Dataset Decision Tree Naïve Bayes SVM PSVM Adaboost

CM1 98.55 82.85 87.79 97.67 100.00

KC1 91.08 82.44 85.73 83.73 91.08

JM1 80.84 78.24 78.71 94.35 80.84

PC1 95.65 88.67 92.23 96.84 95.65

KC3 97.50 80.00 83.50 92.00 97.50

MW1 98.48 81.44 89.77 96.97 98.48

TABLE 5.2: Accuracy of the classifiers after applying cross validation

Dataset Decision Tree Naïve Bayes SVM PSVM Adaboost

CM1 81.93 82.51 87.46 79.51 83.65

KC1 81.78 82.06 85.12 62.04 81.78

JM1 78.45 78.27 66.95 78.53 78.45

PC1 87.61 88.27 91.97 91.44 89.59

KC3 75.00 79.00 81.50 53.00 78.50

MW1 87.09 81.03 89.72 84.33 87.85

Our main goal is to detect those attributes which are causing a software being faulty. In

order to do that the weights of the attributes are calculated and in Rapidminer, the weight operator

calculates which attributes are relevant to the class attribute and generates weight for those

attributes based on information gain. It was found that the attributes which have higher weight

values cause the classes being defective.

 In the CM1 dataset, the highest weighted attribute is LOC_COMMENTS. When the graph

between LOC_COMMENT and defective class (Y) is generated, it is limpidly shown in Fig 5.1,

that whenever the value of LOC_COMMENT increases the Defective (Y) value additionally

increases. The probability of getting not defective class decreases as the LOC_COMMENT value

increases and after a certain number, it stops completely.

19

 Fig. 5.1: Probability of Classes vs LOC_COMMENTS

 Here TP = True Positive, TN = True Negative, FP = False Positive and FN = False

Negative. The weight value of LOC_COMMENT for the CM1 dataset was 0.075. Again for MW1

dataset, the highest weighted attribute is NODE_COUNT. The graph in Fig 5.2 shows the

probability of classification into defective and not defective is related to mostly with this attribute.

We can also see that the lower value of NODE_COUNT attribute causes the software not being so

faulty whereas the higher values tend to do the opposite.

Fig. 5.2: Probability of Classes vs NODE_COUNT

 Different cases can occur when the lowest presence of an attribute can make a software

being faultier. In PC4 dataset, the highest weighted attribute is LOC_CODE_AND_COMMENT.

Fig 5.3 can show us that the minimum values of this attribute makes the greater probability and

highest presence of this software actually causes the software for not being faulty

20

Fig. 5.3: Probability of Classes vs LOC_CODE_AND_COMMENTS

 A manual calculation between this attribute and the class attribute in Table 5.3 shows the

ratio of being defective and not defective with respect to the incrementing number of

LOC_COMMENTS. For example, when the LOC_COMMENT ranges from 1 to 10, the

classification ratio is N:Y = 189:7 which concludes that when the number of line of comments are

less, the module is more likely to be faultless. Again when the LOC_COMMENT value increases

the class is more likely to be defective.

TABLE 5.3: Attributes Statistics

Defective (N) Defective(Y) LOC_COMMENT
value Range

189 7 1-10

65 12 11-20

28 7 21-30

47 14 31-100

3 2 101-339

5.2 Applying Features Selection

Techniques

We have evaluated the performance of our five feature selection processes using the True Positive

Rate, True Negative Rate and Accuracy. These metrics help us to examine whether the methods

can correctly and efficiently recognize the optimized features and show us the effects of feature

selection in the classification [53].

21

For this purpose, we have used RapidMiner version 9.3 software which provides platform for

data science analysis. For calculating accuracy, TPR and TNR values with the classifiers, this

software has been used. The classifiers produced confusion matrix containing four parts. True

positive, true negative, false positive and false negative. True positive rate or Sensitivity is the

result where the positive class is correctly predicted by the model.

𝑇𝑃𝑅 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

 Similarly, true negative rate or Specificity is the result where the negative class is correctly

predicted by the model.

𝑇𝑁𝑅 =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

 Classification accuracy is the fraction of prediction to see whether the model works right.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

 True positive rate, true negative rate and accuracy these three metrics need to be higher

for better prediction. We have calculated all these three metrics on the five datasets with five

classifiers to see the performance evaluation before and after the five feature selection techniques

have been applied. The classifiers used here are: Decision Tree [37], Random Forest [54], Naïve

Bayes [38], Logistic Regression [55] and Artificial Neural Network [56].

Table:5.4,5.5,5.6,5.7,5.8 show the results obtained after selecting relevant features and compares

the classification metrics with each of the classifiers’ predicted results.

5.2.1 Relief Test

TABLE 5.4: Feature selection by Relief test and performance evaluation

Data

set
Decision Tree Random Forest Naïve Bayes Logistic Regression ANN

 TPR TNR Accuracy TPR TNR Accuracy TPR TNR Accuracy TPR TNR Accuracy TPR TNR Accuracy

CM1 0.00 1.00 88% 0.38 1.00 92% 0.29 0.90 83% 0.26 0.98 89% 0.10 0.99 88%

KC3 0.56 1.00 83% 0.61 1.00 93% 0.39 0.89 81% 0.36 0.96 86% 0.14 0.98 83%

PC2 0.38 1.00 99% 0.88 1.00 99% 0.31 0.96 95% 0.13 1.00 99% 0.00 1.00 99%

PC4 0.35 0.99 91% 0.23 1.00 91% 0.56 0.86 82% 0.38 0.98 90% 0.48 0.98 92%

MW1 0.00 1.00 90% 0.63 1.00 96% 0.56 0.85 82% 0.40 0.98 91% 0.30 0.98 91%

 Here, Table 5.4 illustrates the True Positive Rate(TPR), the True Negative Rate(TNR) and

22

the Accuracy of the datasets after running the Relief test with some classification techniques. This

table shows the results when 20 features have been selected. Again, we have selected 10 features

by the same process and the results were more likely similar to this table result or a bit improved

result was shown. For example, in PC2 dataset with 20 features, the TPR, TNR and accuracy values

when applied Naïve Bayes are 0.31, 0.96 and 95% respectively and with the 10 features, the result

is 0.96, 0.25 and 96% respectively. Comparing both the results, we have seen that for Relief test,

dataset with 10 most relevant features performed better than the dataset composed of 20 features.

5.2.2 Chi Square Test

TABLE 5.5: Feature selection by Chi Square test and performance evaluation

Table 5.5 illustrates the TPR, TNR and Accuracy values of different datasets where features are

selected through Chi Square test. We have also calculated values for these dataset with 10 selected

features. The dataset CM1 has TPR = 0.43, TNR = 0.99 and accuracy value = 92% by applying

Decision Tree classification while with 10 features those values are TPR = 0.28, TNR = 1.00 and

accuracy = 91%. Comparing both the results, we have seen that for Chi Square test, dataset with

20 most relevant features performed better than the dataset composed of 10 features.

5.2.3 Information Gain Test

Table 5.6 represents the TPR, TNR and Accuracy values of different datasets where features are

selected through Information Gain test. We have also calculated values for these dataset with 10

selected features. The dataset KC3 has TPR = 0.64, TNR = 0.99 and accuracy value = 93% by

applying Random Forest classification algorithm while with 10 features those values are TPR =

0.67, TNR = 1.00 and accuracy = 94%. Comparing both the results, we have seen that for

Information Gain test, dataset with 20 most relevant features performed almost same as the dataset

composed of 10 features.

Data

set
Decision Tree Random Forest Naïve Bayes Logistic Regression ANN

 TPR TNR Accuracy TPR TNR Accuracy TPR TNR Accuracy TPR TNR Accuracy TPR TNR Accuracy

CM1 0.43 0.99 92% 0.33 1.00 92% 0.29 0.90 83% 0.24 0.97 87% 0.09 0.99 88%

KC3 0.06 1.00 83% 0.67 1.00 94% 0.36 0.91 81% 0.31 0.96 84% 0.11 0.98 83%

PC2 0.25 1.00 99% 0.88 1.00 99% 0.19 0.97 96% 0.19 0.99 99% 0.00 1.00 99%

PC4 0.29 0.99 91% 0.25 1.00 90% 0.26 0.94 85% 0.39 0.98 91% 0.41 0.98 91%

MW1 0.11 1.00 91% 0.67 1.00 97% 0.56 0.85 82% 0.33 0.99 92% 0.44 0.99 93%

23

TABLE 5.6: Feature selection by Information Gain test and performance evaluation

5.2.4 Feature Importance

Table 5.7 illustrates the TPR, TNR and Accuracy values of different datasets where features are

selected through Feature Importance test. We have also calculated values for these dataset with 10

selected features. The dataset MW1 has TPR = 0.41, TNR = 0.98 and accuracy value = 93% by

applying Artificial Neural Network classification algorithm while with 10 features those values are

TPR = 0.33, TNR = 0.99 and precision = 93%. Comparing both the results, we have seen that for

Feature Importance test, dataset with 20 most relevant features performed almost the same as the

dataset composed of 10 features

TABLE 5.7: Feature selection by Feature Importance and performance evaluation

Data

set
Decision Tree Random Forest Naïve Bayes Logistic Regression ANN

 TPR TNR Accuracy TPR TNR Accuracy TPR TNR Accuracy TPR TNR Accuracy TPR TNR Accuracy

CM1 0.43 0.99 92% 0.38 1.00 92% 0.38 0.89 83% 0.26 0.98 90% 0.14 0.98 88%

KC3 0.06 1.00 83% 0.67 1.00 94% 0.36 0.91 82% 0.42 0.96 87% 0.22 0.98 85%

PC2 0.31 1.00 99% 0.88 1.00 99% 0.19 0.97 96% 0.25 0.99 99% 0.00 1.00 99%

PC4 0.30 0.99 91% 0.30 1.00 91% 0.30 0.94 85% 0.40 0.98 91% 0.43 0.98 91%

MW1 0.11 1.00 92% 0.67 1.00 97% 0.56 0.86 83% 0.33 0.99 92% 0.41 0.98 93%

5.2.5 Chi Square Test of Independence

Table 5.8 shows the TPR, TNR and Accuracy values of different datasets where features are

selected through Chi Square Test of Independence. We have also calculated values for these

Data

set
Decision Tree Random Forest Naïve Bayes Logistic Regression ANN

 TPR
TN
R

Accuracy TPR
TN
R

Accuracy TPR TNR Accuracy TPR TNR Accuracy TPR TNR Accuracy

CM1 0.38 0.99 92% 0.36 1.00 92% 0.36 0.90 84% 0.26 0.99 90% 0.17 0.99 90%

KC3 0.50 0.99 90% 0.64 0.99 93% 0.34 0.91 82% 0.44 0.97 88% 0.31 1.00 87%

PC2 0.25 1.00 99% 0.69 1.00 99% 0.19 0.97 96% 0.19 1.00 99% 0.00 1.00 99%

PC4 0.30 0.99 90% 0.26 1.00 90% 0.54 0.92 88% 0.43 0.99 91% 0.51 0.98 92%

MW1 0.11 1.00 91% 0.59 1.00 96% 0.59 0.86 83% 0.33 0.99 93% 0.44 0.99 94%

24

dataset with 10 selected features. The dataset PC4 has TPR = 0.29, TNR = 0.99 and accuracy

value = 91% by applying Logistic Regression classification algorithm while with 10 features those

values are TPR = 0.28, TNR = 0.97 and precision = 85%. Comparing both the results, we have

seen that for Chi Square Test of Independence, dataset with 20 most relevant features performed

better than the dataset composed of 10 features.

TABLE 5.8: Feature selection by Chi Square Test of Independence and performance evaluation

Datas

et
Decision Tree Random Forest Naïve Bayes

Logistic

Regression
ANN

 TPR TNR Accuracy TPR TNR Accuracy TPR TNR Accuracy TPR TNR Accuracy TPR TNR Accuracy

CM1 0.43 0.99 92% 0.33 1.00 92% 0.29 0.90 83% 0.24 0.97 89% 0.09 0.99 88%

KC3 0.06 1.00 83% 0.67 1.00 94% 0.36 0.91 81% 0.31 0.96 84% 0.11 0.98 82%

PC2 0.25 1.00 99% 0.88 1.00 99% 0.19 0.97 96% 0.19 0.99 99% 0 1 99%

PC4 0.29 0.99 91% 0.25 1.00 90% 0.26 0.94 85% 0.39 0.98 91% 0.41 0.98 91%

MW1 0.11 1.00 91% 0.63 1.00 96% 0.51 0.99 83% 0.52 0.87 93% 0.44 0.98 93%

The aim of feature selection for detecting the faults in software was to find out the features

which are more important and relevant to the target class and discard the features which are less

important or the correlation between them and the target class is less enough to compute the

classification without them. NSA dataset consisting 13 datasets each has many numbers of

attributes. So if we can find the more important features, the computational time can be reduced,

the resources can be less used and the classification efficiency can be increased. We have tried 5

selection processes to select features from the datasets and we took 20 most important features for

the classification process.

When applied in decision tree, considering all features to calculate the confusion matrix in

CM1 dataset, we found that the algorithm could only predict for N values but no Y values. The Not

defective class only has the class precision value. But when applied Chi Square Test, Decision Tree

could predict both the Not defective class and Defective class (TP = 18, TN = 300). For Information

Gain process the numbers are TP = 16, TN = 299, for Feature Importance process the numbers are

TP = 18, TN = 299, for chi square test of independence test the number are TP = 18, TN = 200 but

for relief process the numbers are TP = 0, TN = 302. So it can be shown that among the five

processes relief could not predict the Defective class like the other classes.

Again for KC3 dataset, the feature selection process had less effect compared to the result

which was calculated considering all the features. The TPR and TNR values were usually the same

or a little different from the main dataset calculation. For the PC2 dataset, the total number of

defective class is very less, so the algorithms could not work better in the classification. The Naïve

25

Bayes and Logistic Regression algorithms can detect the defective classes in a better way. The

datasets with all features and the datasets with the selected features show almost the same result in

both cases. In the PC4 dataset, the features selected by Relief process worked better for Naïve

Bayes and Decision Tree algorithms and Chi Square test of independence performed better for

Random Forest algorithm compared to the result computed when all the features were present. For

example, the TP and TN values calculated with all the features are 69 and 1158 respectively but

with 20 selected features through Relief process the TP and TN values become 100 and 1049

respectively. Lastly, for the MW1 dataset, all the algorithms with all the features and with the

selected features performed almost the same.

Fig. 5.4: Accuracy of different datasets before and after applying feature selection

In Fig 5.4 the accuracy of the different dataset is shown for the decision tree algorithm.

Each dataset is tested with all the features and also with the subsets of selected features’ datasets.

We have taken the average value of the accuracies when the features are selected with five different

processes. It can be showed that the accuracy which was calculated with all the features is almost

same and absolutely same in some of the cases. It goes same for the other four algorithms we have

applied on our datasets.

88%

83%

99%

91%

91%

90%

83%

99%

91%

91%

0% 20% 40% 60% 80% 100%

CM1

KC3

PC2

PC4

MW1

Decision Tree

Selected Features' Average Accuracy All features Accuracy

26

Fig. 5.5: Accuracy comparison between 10 features’ average accuracy and 20 features’

average accuracy

 Similarly, Fig 5.5 illustrates the accuracy comparison between 10 features’ average

accuracy and 20 features’ average accuracy when random forest classifier is applied for the defect

prediction. Here we can see that for dataset MW1, PC4 and PC2 the accuracy in both subsets of

the datasets gives same or almost the same accuracy values. Whereas, on dataset KC3 the

classifier gives better result for subset with top 20 features and on dataset CM1 the classifier gives

better result for subset containing top 10 features. For other classifiers, while compared the

accuracy with subsets containing 10 features, it has been observed that some classifiers worked

better on 10 features’ subsets and some worked better on 20 features’ subsets but the difference

between these accuracy values is quite negligible. This can conclude that the selected features are

the most relevant ones to predict the classes more efficiently. The obtained result shows without

taking all the features for calculation, the top 10 or top 20 features can be taken and get the best

result

0 20 40 60 80 100

CM1

KC3

PC2

PC4

MW1

Random Forest

Top 20 Features' Average Accuracy Top 10 Features' Average Accuracy

27

5.3 Recall Value Comparison

Fig. 5.6: Recall values for Decision Tree

In Fig 5.6 the recall values for each of the feature selection techniques are shown after applying

Decision Tree. We can see that the Relief test worked best in case of dataset KC3, PC2 and PC4

and the recall values are 0.56, 0.38 and 0.35 respectively.

Fig. 5.7: Recall values for Random Forest

In Fig 5.7 the recall values for each of the feature selection techniques are shown after applying

Random Forest. We can see that the Feature Importance test worked best in case of all datasets and

the recall values are 0.38, 0.67, 0.88, 0.3 and 0.67 respectively.

0

0.56

0.38
0.35

0
0

0.1

0.2

0.3

0.4

0.5

0.6

CM1 KC3 PC2 PC4 MW1

Recall values for Decision Tree

Chi Square Chi Square test of Independence

Information Gain Relief

Feature Importance

0.38

0.67

0.88

0.3

0.67

0

0.2

0.4

0.6

0.8

1

CM1 KC3 PC2 PC4 MW1

Recall values for Random Forest

Chi Square Chi Square test of Independence

Information Gain Relief

Feature Importance

28

Fig. 5.8: Recall values for Naïve Bayes

In Fig 5.8 the recall values for each of the feature selection techniques are shown after applying

Naïve Bayes. We can see that the Feature Importance worked best for CM1 dataset, Relief worked

best for KC3, PC2 and PC4 datasets and Information Gain worked best for MW1 dataset.

Fig. 5.9: Recall values for Logistic Regression

In Fig 5.9 the recall values for each of the feature selection techniques are shown after applying

Logistic Regression. We can see that the Information Gain worked best for CM1, KC3 and PC4

datasets, Feature Importance worked best for PC2 and Chi Square Test of Independence worked

best for MW1 dataset.

0.38 0.36

0.19

0.3

0.56

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

CM1 KC3 PC2 PC4 MW1

Recall value for Naive Bayes

Chi Square Chi Square test of Independence

Information Gain Relief

Feature Importance

0

0.1

0.2

0.3

0.4

0.5

0.6

CM1 KC3 PC2 PC4 MW1

Recall values for Logistic Regression

Chi Square Chi Square test of Independence

Information Gain Relief

Feature Importance

29

Fig. 5.10: Recall values for Artificial Neural Network

In Fig 5.10 the recall values for each of the feature selection techniques are shown after applying

Artificial Neural Network. We can see that the Information Gain worked best for CM1, KC3, PC4

and MW1 datasets. We can also notice here that in case of feature selection techniques ANN

classifier could not detect any classes at all.

5.4 Rules Generation

5.4.1 Rules generation for selected attributes

without applying feature selection

The association rules [57] are also generated for a specific dataset to witness the attributes’ effect

on the target values. The rules are basically generated for improving the existing patterns by

correctly identifying the important patterns. If the important patterns cannot be generated, the

useless patterns get maximized and the prediction of the targeted class gets hampered. The problem

which is common to all that is the prediction models which are used to predict the class attributes

is not easily understandable to human [58]. Software developers cannot quickly and easily get the

fact why a selected module is faulty so by generating rules, it can be easier to the developers to

understand better why a certain module is showing a negative result or vice versa. In our selected

dataset, each one contains a great number of attributes So we have used the Rapidminer weight

calculation. For the experiment, JM1 has been chosen and it was found that LOC_TOTAL,

LOC_EXECUTABLE, LOC_BLANK have higher weight values. So association rules are

generated based on these attributes and the confidence and support values are also used. These two

parameters identify the most important relationships. The confidence value is set to 0.95 for

generating the following rules. Following is Table 5.9 where the association rules are shown along

with their confidence values.

0

0.1

0.2

0.3

0.4

0.5

0.6

CM1 KC3 PC2 PC4 MW1

Recall values for ANN

Chi Square Chi Square test of Independence

Information Gain Relief

Feature Importance

30

TABLE 5.9: Rules Generation

𝑹𝟏: ((𝐿𝑂𝐶𝑇𝑂𝑇𝐴𝐿 <= 40.5 ∧ 𝐿𝑂𝐶𝑇𝑂𝑇𝐴𝐿 >= 24.0)

∧ (𝐿𝑂𝐶𝐵𝐿𝐴𝑁𝐾 >= 3.5 ∧ 𝐿𝑂𝐶𝐵𝐿𝐴𝑁𝐾 <= 7.5) ∧ 𝐿𝑂𝐶𝐸𝑋𝐸𝐶𝑈𝑇𝐴𝐵𝐿𝐸 <= 2.5)
→ (𝐶𝐿𝐴𝑆𝑆: 𝑁)

𝑹𝟐: ((𝐿𝑂𝐶𝑇𝑂𝑇𝐴𝐿 <= 40.5 ∧ 𝐿𝑂𝐶𝑇𝑂𝑇𝐴𝐿 >= 12.5)

∧ (𝐿𝑂𝐶𝐵𝐿𝐴𝑁𝐾 >= 3.5 ∧ 𝐿𝑂𝐶𝐵𝐿𝐴𝑁𝐾 <= 7.5) ∧ 𝐿𝑂𝐶𝐸𝑋𝐸𝐶𝑈𝑇𝐴𝐵𝐿𝐸 >= 2.5)
→ (𝐶𝐿𝐴𝑆𝑆: 𝑌)

𝑹𝟑: ((𝐿𝑂𝐶𝑇𝑂𝑇𝐴𝐿 <= 40.5 ∧ 𝐿𝑂𝐶𝑇𝑂𝑇𝐴𝐿 >= 6.5) ∧ (𝐿𝑂𝐶𝐵𝐿𝐴𝑁𝐾 <= 0.5) ∧ 𝐿𝑂𝐶𝐸𝑋𝐸𝐶𝑈𝑇𝐴𝐵𝐿𝐸

<= 2.5) → (𝐶𝐿𝑎𝑠𝑠: 𝑁)

𝑹𝟒: ((𝐿𝑂𝐶𝑇𝑂𝑇𝐴𝐿 <= 34 ∧ 𝐿𝑂𝐶𝑇𝑂𝑇𝐴𝐿 >= 24.0)

∧ (𝐿𝑂𝐶𝐵𝐿𝐴𝑁𝐾 >= 4.5 ∧ 𝐿𝑂𝐶𝐵𝐿𝐴𝑁𝐾 <= 7.5) ∧ 𝐿𝑂𝐶𝐸𝑋𝐸𝐶𝑈𝑇𝐴𝐵𝐿𝐸 <= 22.5)
→ (𝐶𝐿𝐴𝑆𝑆: 𝑌)

𝑹𝟓: ((𝐿𝑂𝐶𝑇𝑂𝑇𝐴𝐿 >= 0 ∧ 𝐿𝑂𝐶𝑇𝑂𝑇𝐴𝐿 <= 24.5)

∧ (𝐿𝑂𝐶𝐸𝑋𝐸𝐶𝑈𝑇𝐴𝐵𝐿𝐸 >= 0 ∧ 𝐿𝑂𝐶𝐸𝑋𝐸𝐶𝑈𝑇𝐴𝐵𝐿𝐸 <= 28.5) ∧ 𝐿𝑂𝐶𝐵𝐿𝐴𝑁𝐾 <

= 1.5) → (𝐶𝐿𝐴𝑆𝑆: 𝑌)

𝑹𝟔: ((𝐿𝑂𝐶𝑇𝑂𝑇𝐴𝐿 >= 40.5 ∧ 𝐿𝑂𝐶𝑇𝑂𝑇𝐴𝐿 ≤ 67.5)

∧ (𝐿𝑂𝐶𝐸𝑋𝐸𝐶𝑈𝑇𝐴𝐵𝐿𝐸 >= 0 ∧ 𝐿𝑂𝐶𝐸𝑋𝐸𝐶𝑈𝑇𝐴𝐵𝐿𝐸 <= 6.5) ∧ 𝐿𝑂𝐶𝐵𝐿𝐴𝑁𝐾 <

= 1.5) → (𝐶𝐿𝐴𝑆𝑆: 𝑁)

𝑹𝟕: ((𝐿𝑂𝐶𝑇𝑂𝑇𝐴𝐿 >= 77) ∧ (𝐿𝑂𝐶𝐸𝑋𝐸𝐶𝑈𝑇𝐴𝐵𝐿𝐸 >= 0 ∧ 𝐿𝑂𝐶𝐸𝑋𝐸𝐶𝑈𝑇𝐴𝐵𝐿𝐸 <= 6.5) ∧ 𝐿𝑂𝐶𝐵𝐿𝐴𝑁𝐾

<= 1.5) → (𝐶𝐿𝐴𝑆𝑆: 𝑁)

𝑹𝟖: ((𝐿𝑂𝐶𝑇𝑂𝑇𝐴𝐿 <= 77.0 ∧ 𝐿𝑂𝐶𝑇𝑂𝑇𝐴𝐿 >= 70.5)

∧ (𝐿𝑂𝐶𝐵𝐿𝐴𝑁𝐾 >= 0 ∧ 𝐿𝑂𝐶𝐵𝐿𝐴𝑁𝐾 <= 3.5) ∧ 𝐿𝑂𝐶𝐸𝑋𝐸𝐶𝑈𝑇𝐴𝐵𝐿𝐸 <= 56.5)
→ (𝐶𝐿𝐴𝑆𝑆: 𝑌)

𝑹𝟗: ((𝐿𝑂𝐶𝑇𝑂𝑇𝐴𝐿 >= 0 ∧ 𝐿𝑂𝐶𝑇𝑂𝑇𝐴𝐿 <= 40.5) ∧ (𝐿𝑂𝐶𝐵𝐿𝐴𝑁𝐾 >= 0 ∧ 𝐿𝑂𝐶𝐵𝐿𝐴𝑁𝐾 <= 7.5)

∧ 𝐿𝑂𝐶𝐸𝑋𝐸𝐶𝑈𝑇𝐴𝐵𝐿𝐸 <= 6.5) → (𝐶𝐿𝐴𝑆𝑆: 𝑁)

𝑹𝟏𝟎: ((𝐿𝑂𝐶𝑇𝑂𝑇𝐴𝐿 >= 40.5 ∧ 𝐿𝑂𝐶𝑇𝑂𝑇𝐴𝐿 <= 77.5)

∧ (𝐿𝑂𝐶𝐵𝐿𝐴𝑁𝐾 >= 0 ∧ 𝐿𝑂𝐶𝐵𝐿𝐴𝑁𝐾 <= 1.5) ∧ 𝐿𝑂𝐶𝐸𝑋𝐸𝐶𝑈𝑇𝐴𝐵𝐿𝐸 <= 6.5)
→ (𝐶𝐿𝐴𝑆𝑆: 𝑁)

𝑹𝟏𝟏: ((𝐿𝑂𝐶𝑇𝑂𝑇𝐴𝐿 >= 0 ∧ 𝐿𝑂𝐶𝑇𝑂𝑇𝐴𝐿 <= 40.5) ∧ (𝐿𝑂𝐶𝐵𝐿𝐴𝑁𝐾 >= 0 ∧ 𝐿𝑂𝐶𝐵𝐿𝐴𝑁𝐾 <= 7.5)

∧ 𝐿𝑂𝐶𝐸𝑋𝐸𝐶𝑈𝑇𝐴𝐵𝐿𝐸 <= 6.5) → (𝐶𝐿𝐴𝑆𝑆: 𝑁)

We have also used another operator of that software which is w-predictive apriori [17] which is

class implementing the predictive apriori algorithm to mine association. The values of selected

three attributes with the class attribute have been converted to binomial form from numerical form.

After then the predictive apriori operator has been applied and this implementation gave some rules

TABLE 5.10: Generating rules using Apriori

1. 𝐿𝑂𝐶_𝐸𝑋𝐸𝐶𝑈𝑇𝐴𝐵𝐿𝐸 = 𝑓𝑎𝑙𝑠𝑒 → 𝐿𝑂𝐶_𝐵𝐿𝐴𝑁𝐾 = 𝑓𝑎𝑙𝑠𝑒
2. 𝐿𝑂𝐶_𝐸𝑋𝐸𝐶𝑈𝑇𝐴𝐵𝐿𝐸 = 𝑓𝑎𝑙𝑠𝑒 → 𝐿𝑂𝐶_𝐵𝐿𝐴𝑁𝐾 = 𝑓𝑎𝑙𝑠𝑒 ∧ 𝑙𝑎𝑏𝑒𝑙{𝑌, 𝑁} = 𝑌
3. 𝐿𝑂𝐶_𝐵𝐿𝐴𝑁𝐾 = 𝑓𝑎𝑙𝑠𝑒 ∧ 𝑙𝑎𝑏𝑒𝑙{𝑌, 𝑁} = 𝑌 → 𝐿𝑂𝐶_𝐸𝑋𝐸𝐶𝑈𝑇𝐴𝐵𝐿𝐸 = 𝑓𝑎𝑙𝑠𝑒
4. 𝐿𝑂𝐶_𝐵𝐿𝐴𝑁𝐾 = 𝑓𝑎𝑙𝑠𝑒 → 𝑙𝑎𝑏𝑒𝑙{𝑌, 𝑁} = 𝑌
5. 𝑙𝑎𝑏𝑒𝑙{𝑌, 𝑁} = 𝑌 → 𝐿𝑂𝐶_𝐵𝐿𝐴𝑁𝐾 = 𝑓𝑎𝑙𝑠𝑒
6. 𝐿𝑂𝐶_𝐵𝐿𝐴𝑁𝐾 = 𝑓𝑎𝑙𝑠𝑒 → 𝐿𝑂𝐶_𝐸𝑋𝐸𝐶𝑈𝑇𝐴𝐵𝐿𝐸 = 𝑓𝑎𝑙𝑠𝑒
7. 𝐿𝑂𝐶_𝐵𝐿𝐴𝑁𝐾 = 𝑓𝑎𝑙𝑠𝑒 → 𝐿𝑂𝐶_𝐸𝑋𝐸𝐶𝑈𝑇𝐴𝐵𝐿𝐸 = 𝑓𝑎𝑙𝑠𝑒 ∧ 𝑙𝑎𝑏𝑒𝑙{𝑌, 𝑁} = 𝑌

31

8. 𝑙𝑎𝑏𝑒𝑙{𝑌, 𝑁} = 𝑌 → 𝐿𝑂𝐶_𝐵𝐿𝐴𝑁𝐾 = 𝑓𝑎𝑙𝑠𝑒 ∧ 𝐿𝑂𝐶_𝐸𝑋𝐸𝐶𝑈𝑇𝐴𝐵𝐿𝐸 = 𝑓𝑎𝑙𝑠𝑒

5.4.2 Rules generation for selected attributes

after applying feature selection

Again, we have mined the following rules for “CM1” dataset after applying feature selection

techniques on Decision Tree classifier for best ten attributes. After building the decision tree

classifier, we converted it into equivalent set of rules. For generating the rules, we traced each path

in the decision tree from root to leaf node. Though we have used 5 classifiers, 5 feature selection

techniques and 5 datasets, there can be 125 combinations possible. It is hard to mine the rules for

all 125 combinations. That is why we randomly picked one combination and generated all the rules

which are really significant for our experiment. We have found out total 17 rules which have big

impact on “defective” class for the described scenario.

1. (𝐿𝑂𝐶_𝐸𝑋𝐸𝐶𝑈𝑇𝐴𝐵𝐿𝐸 ≤ 68.0 ∧ 𝐿𝑂𝐶_𝐶𝑂𝑀𝑀𝐸𝑁𝑇𝑆 ≤ 6.0 ∧ 𝐿𝑂𝐶_𝑇𝑂𝑇𝐴𝐿 ≤ 54.0 ∧
𝐻𝐴𝐿𝑆𝑇𝐸𝐴𝐷_𝐸𝐹𝐹𝑂𝑅𝑇 ≤ 1230.0 ∧ 𝐻𝐴𝐿𝑆𝑇𝐸𝐴𝐷_𝑉𝑂𝐿𝑈𝑀𝐸 > 153.0) → 𝑑𝑒𝑓𝑒𝑐𝑡𝑖𝑣𝑒

2. (LOC_EXECUTABLE <= 68.0 ∧ LOC_COMMENTS <= 6.0 ∧ LOC_TOTAL <= 54.0 ∧
HALSTEAD_VOLUME <= 1262.0) -> defective

3. (LOC_EXECUTABLE <= 68.0 ∧ LOC_COMMENTS > 6.0 ∧ NUMBER_OF_LINES <= 104.0 ∧
NUMBER_OF_LINES <= 100.0 ∧ LOC_COMMENTS <= 30.0 ∧ HALSTEAD_PROG_TIME <= 2049.0
∧ NUM_OPERATORS <= 94.0 ∧ NUM_OPERATORS <= 72.0 ∧ LOC_COMMENTS <= 8.0 ∧
HALSTEAD_EFFORT > 5332.0) -> defective

4. (LOC_EXECUTABLE <= 68.0 ∧ LOC_COMMENTS > 6.0 ∧ NUMBER_OF_LINES <= 104.0 ∧
NUMBER_OF_LINES <= 100.0 ∧ LOC_COMMENTS <= 30.0 ∧ HALSTEAD_PROG_TIME <= 2049.0
∧ NUM_OPERATORS <= 94.0 ∧ NUM_OPERATORS <= 72.0 ∧ LOC_COMMENTS <= 8.0 ∧
LOC_COMMENTS > 16.0 ∧ NUMBER_OF_LINES <= 57.0 ∧ NUM_OPERANDS <= 28.0) ->
defective

5. (LOC_EXECUTABLE <= 68.0 ∧ LOC_COMMENTS > 6.0 ∧ NUMBER_OF_LINES <= 104.0 ∧
NUMBER_OF_LINES <= 100.0 ∧ LOC_COMMENTS <= 30.0 ∧ HALSTEAD_PROG_TIME <= 2049.0
∧ NUM_OPERATORS <= 94.0 ∧ NUM_OPERATORS <= 72.0 ∧ LOC_COMMENTS <= 8.0 ∧
LOC_COMMENTS > 16.0 ∧ NUMBER_OF_LINES <= 57.0 ∧ NUM_OPERANDS> > 28.0 ∧
NUMBER_OF_LINES <= 50.0) -> defective

6. (LOC_EXECUTABLE <= 68.0 ∧ LOC_COMMENTS > 6.0 ∧ NUMBER_OF_LINES <= 104.0 ∧
NUMBER_OF_LINES <= 100.0 ∧ LOC_COMMENTS <= 30.0 ∧ HALSTEAD_PROG_TIME <= 2049.0
∧ NUM_OPERATORS <= 94.0 ∧ NUM_OPERATORS <= 72.0 ∧ LOC_COMMENTS > 8.0 ∧
HALSTEAD_EFFORT <= 8944.0) -> defective

7. (LOC_EXECUTABLE <= 68.0 ∧ LOC_COMMENTS > 6.0 ∧ NUMBER_OF_LINES <= 104.0 ∧
NUMBER_OF_LINES <= 100.0 ∧ LOC_COMMENTS <= 30.0 ∧ HALSTEAD_PROG_TIME <= 2049.0
∧ NUM_OPERATORS <= 94.0 ∧ NUM_OPERATORS <= 72.0 ∧ LOC_COMMENTS > 8.0 ∧
HALSTEAD_EFFORT > 8944.0 ∧ NUM_OPERANDS > 46.0 ∧ NUMBER_OF_LINES <= 71.0) ->
defective

8. (LOC_EXECUTABLE <= 68.0 ∧ LOC_COMMENTS > 6.0 ∧ NUMBER_OF_LINES <= 104.0 ∧
NUMBER_OF_LINES <= 100.0 ∧ LOC_COMMENTS <= 30.0 ∧ HALSTEAD_PROG_TIME <= 2049.0
∧ NUM_OPERATORS <= 94.0 ∧ NUM_OPERATORS <= 72.0 ∧ LOC_COMMENTS > 8.0 ∧
HALSTEAD_EFFORT > 8944.0 ∧ NUM_OPERANDS > 46.0 ∧ NUMBER_OF_LINES > 71.0 ∧
LOC_EXECUTABLE <= 28.0) -> defective

9. (LOC_EXECUTABLE <= 68.0 ∧ LOC_COMMENTS > 6.0 ∧ NUMBER_OF_LINES <= 104.0 ∧
NUMBER_OF_LINES <= 100.0 ∧ LOC_COMMENTS <= 30.0 ∧ HALSTEAD_PROG_TIME > 2049.0
∧ HALSTEAD_EFFORT <= 49109.0) -> defective

32

10. (LOC_EXECUTABLE <= 68.0 ∧ LOC_COMMENTS > 6.0 ∧ NUMBER_OF_LINES <= 104.0 ∧
NUMBER_OF_LINES <= 100.0 ∧ LOC_COMMENTS > 30.0 ∧ LOC_COMMENTS <= 34.0 ∧
NUMBER_OF_LINES <= 92.0) -> defective

11. (LOC_EXECUTABLE <= 68.0 ∧ LOC_COMMENTS > 6.0 ∧ NUMBER_OF_LINES <= 104.0 ∧
NUMBER_OF_LINES > 100.0) -> defective

12. (LOC_EXECUTABLE > 68.0 ∧ LOC_TOTAL <= 100.0 ∧ HALSTEAD_LENGTH <= 233.0) ->
defective

13. (LOC_EXECUTABLE > 68.0 ∧ LOC_TOTAL <= 100.0 ∧ LOC_TOTAL > 80.0) -> defective

14. (LOC_EXECUTABLE > 68.0 ∧ LOC_TOTAL <= 100.0 ∧ LOC_COMMENTS <= 60.0 ∧
HALSTEAD_EFFORT <= 91115.0) -> defective

15. (LOC_EXECUTABLE > 68.0 ∧ LOC_TOTAL <= 100.0 ∧ LOC_COMMENTS > 60.0 ∧
NUM_OPERANDS <= 261.0 ∧ HALSTEAD_LENGTH > 444.0) -> defective

16. (LOC_EXECUTABLE > 68.0 ∧ LOC_TOTAL <= 100.0 ∧ LOC_COMMENTS > 60.0 ∧
NUM_OPERANDS > 261.0 ∧ HALSTEAD_LENGTH > 444.0) -> defective

17. (LOC_EXECUTABLE > 68.0 ∧ LOC_TOTAL <= 100.0 ∧ LOC_COMMENTS > 60.0 ∧

NUM_OPERANDS > 261.0 ∧ LOC_COMMENTS > 168.0 ∧ HALSTEAD_PROG_TIME <= 59812.0)

-> defective.

33

Chapter 6

Managing Class

Imbalance Problem

6.1 Class Imbalance

Managing the class imbalance issue of our dataset was one of the significant issues to consider.

This is a reality that number of flawed modules in a dataset are in minority when contrasted with

number of non-faulty dataset. Accordingly, when the datasets are prepared applying classifier

with imbalanced dataset, the classifier will in general disregard the minor classes focusing on

major classes. The classifiers will in general produce high predictive accuracy over the majority

class, however poor predictive accuracy over the minority class. It has been seen that managing

class imbalance issue extraordinarily improve the precision rate of prediction model whereas

maintain Pf, balance and accuracy. Recall is measuring of defective software modules correctly

predict as defective among the modules classified as defective. Recall is low if the number of

defective modules predicted correctly is small in number or large number of defective modules is

predicted as non-defective. So it is a huge assessment measure for basic framework where it is

increasingly critical to accurately anticipate which software part is defective with the goal that all

the more testing has been done so as to make the product item fault free. If a software module that

is actually defective but because of poor recall rate predicted as non-defective would be less tested

and therefore there is a chance that error may occur when software is deployed in real space. In

this manner, recall is a fundamental assessment measurement for the critical real time software.

We have also compared our result in order to endorse the efficiency of proposed approach.

Dealing with imbalanced datasets includes various strategies such as improving classification

algorithms or balancing classes in the training dataset before providing the data as input to the

data mining algorithm. We have considered three techniques used for balancing the classes. The

main idea of sampling classes is to either increasing the samples of the minority class or

decreasing the number of instances for both the class.

34

6.2 Techniques to sample dataset

6.2.1 Random Under Sampling

The aim of this technique is to balance the class distribution by randomly reducing majority class

examples. When instances of two different classes are very close to each other, the instances of

the majority class are eliminated to increase the space between two classes. This helps in

classification process. Various experimental results show that random under sampling

significantly improves classification performance in comparison to not using the any data

sampling [59]. The advantages of random over sampling technique are it can help the runtime of

the model and solve the memory problems by reducing the number of training data samples when

training data set is enormous. But it can discard useful information about the data itself which

could be necessary for building rule based classifiers such as Random Forests. Again, the sample

chosen by random under sampling may be a biased sample. And it will not be an accurate

representation of the population in that case.

6.2.2 Random Over Sampling

Just like random under sampling, random oversampling has been performed. It is a rationalized

technique proposed to handle imbalanced data sets using exclusive safe-level based synthetic

sample creation [60]. But in this case, taking any help from majority class, the instances

corresponding to minority class are increased by replicating them up to a constant degree. Here the

number of instances assigned to the majority class are not decreased. Unlike under sampling, this

method leads to no information loss. In fact, it increases the likelihood of overfitting since it

replicates the minority class events. A visual representation of these two sampling techniques is

illustrated in Fig 6.1.

Fig. 6.1: Visual representation of sampling techniques

35

6.2.3 SMOTE

SMOTE stands for Synthetic Minority Over-Sampling Technique. This over sampling method

creates example which are synthetic. It does not over sample by replacements. The minority class

is over sampled by taking each minority class sample and introducing synthetic examples along the

line segments joining any or all of the k – minority class nearest neighbors. Depending upon the

amount of over sampling required, neighbors from the k nearest neighbors are randomly chosen. It

synthesizes the instances randomly which are minor. Its selected nearest neighbors ignores the

close majority instances [61]. The heart of SMOTE is the construction of minority classes. The

intuition behind the construction algorithm is simple. It has been shown that to a machine learning

algorithm, the newly constructed instances are not exact copies and thus it softens the decision

boundary and thereby helping the algorithm to approximate the hypothesis more accurately. The

advantages of SMOTE are it alleviates overfitting caused by random oversampling as synthetic

examples are generated rather than replication of instances. It does not cause the loss of

information. It’s simple to implement and interpret. But while generating synthetic examples,

SMOTE does not take into consideration neighboring examples can be from other classes. The

overlapping of classes can be increased through this and the additional noise can be introduced.

We have applied all these three techniques and the comparison among them is shown in

Error! Reference source not found..

TABLE 6.1: Comparison among three sampling techniques

Dataset
Defective detection

without resampling

Over

Sampling

Under

Sampling
SMOTE

CM1 9% 47% 63% 100%

KC3 16% 76% 76% 85%

MW1 27% 46% 46% 100%

PC2 0% 50% 67% 89%

PC4 25% 84% 87% 94%

 Here we have applied Logistic Regression in all of the five datasets and the split ratio is

60:40. The results represents that SMOTE works better when classifying the defective class than

other techniques because by using SMOTE recall is increased at the cost of precision. It can be

seen that the sampling techniques used by the under sampling of the major class and over sampling

of the minor class does not affect the classification of major classes as all classifiers can classify

the major classes [61]. However, the effect of these three sampling techniques can be observed in

classification of minor classes. The recall rate of the minor classes is found to increase. It is visible

that before sampling the dataset the recall rate of the classifiers was below 30% but when the

sampling techniques are implemented the recall rate increased and the classifiers can detect the

36

defects more accurately. For example, in the CM1 dataset, before sampling the classifier could

detect 9% of the total defects. But after sampling the dataset with three of the sampling techniques

it showed increase in the result and when applied SMOTE the classifier can detect defects in the

dataset by 100%. This is certainly very positive improvement for detecting faults in software.

 So the results can show that by addressing the issue of class imbalance problem the recall

rate of defect predictor has been greatly improves as class imbalance significantly affect the

performance of defect predictors. It can also be observed that the probability of prediction would

be affected a bit when using balanced datasets. So the balanced dataset when applied different

classifiers and evaluation metrics can perform better in terms of detecting faults in software.

37

Chapter 7

Tool Implementation

7.1 Tool Description

We have built a Graphical User Interface (GUI) for our model. This interface has been built using

PyQT framework. It consists of five classifiers (Decision Tree, Random Forest, Naïve Bayes,

Logistic Regression, Neural Network) and five feature selection techniques (Information Gain,

Relief, Chi Square, Chi square Test of Independence, Feature Importance.

We can manually select the dataset by clicking “Input Dataset”. After selecting a dataset,

a classifier and/or a feature selection technique, we can calculate the Accuracy, Confusion Matrix

and Area Under Curve (AUC). We can also view the ROC curve for the corresponding classifier

and technique.

Fig. 7.1: GUI of "Effect of feature selection in software fault detection

38

 Now step by step, we will see the demonstration and the functionality of our GUI.

Step 1 (Selecting a classifier and a technique)

For example, we have selected the Random Forest classifier and Feature Importance. We can select

the other options also. Maximum 25 combinations are possible to execute for this scenario.

Fig. 7.2: Selecting a classifier and a technique

Step 2 (Selecting a dataset and see the dataset overview)

We can manually select any of the dataset. We have selected MW1.xls for this scenario. After

selection the dataset a new window called Dataset Overview will pop up and from this window we

can see the dataset’s basic properties. For graphical view of the dataset we should hit the Graphical

View button.

39

Fig. 7.3: Selecting a dataset

Fig. 7.4: Dataset Statistics

40

Fig.7.5: Graphical representation of the dataset

Step 3 (Result)

After doing all the previous steps, it’s time for seeing the result. Result window only pop up if we

have done the previous steps correctly, otherwise it will not. In the result section we will see the

Accuracy, Confusion Matrix, Area Under Curve (AUC). For viewing the ROC curve we should hit

the View Roc Curve button.

41

Fig. 7.6: Representation of accuracy, confusion matrix and AUC

Fig. 7.7: Display of ROC curve

42

Chapter 8

Conclusion

8.1 Summary

Software fault prediction improves software quality, reliability and prevents from future losses.

From one of our experiments we have found that the models applied for calculating accuracies

can detect the probability of a software’s being faulty before it actually causes some fatal issues.

The main importance was given on detecting the defective classes so all the experiments were

done accordingly. The effects of the attributes on different dataset shows us that by increasing or

decreasing those attributes’ values the defective or non-defective classes can be distinguished

easily. The improvement or the modification of these classifiers and an extensive comparison

among them can definitely bring better results. Moreover, including more metrics in the learning

step is one conceivable way to deal with the increment of the accuracy and precision.

Another significant experiment result shows that proper selection of relevant features in a large

dataset can immensely improve the performance of classifiers and significantly reduces the

training time. Among the various feature techniques, our experiment shows the effect of feature

selection of only five approaches. Five search-based classifiers are applied here for our

experiments. The experimental results reveal that after feature selection the performance of the

classifiers are almost similar to that of without feature selection. Experiments have been

conducted by considering both 10 and 20 features from the datasets. The variation among the

obtained results are not significant. Such result implies that feature selection approaches do not

compromise the performance of the classifiers while taking less time and resource during the

experiments.

The improvement in the classifiers defect detection model after applying dataset sampling

techniques is another significant result for our project. The imbalanced ratio of the class makes

the classifier to give poor classification result and most of the time this fails to detect the most

important class which needs to be detected first. That is why balancing of the classification is

important and with the three techniques applied in our dataset we can conclude that the classifier

worked better and more effectively.

43

8.2 Future Work

Future works can be done on the other datasets for mining important results from them.

Combination of other learning algorithms or other hybrid algorithms can be built to apply in these

datasets. This can show us whether the other learning approaches can work more effectively on

the dataset. It is mentioned earlier that only a subset of feature selection techniques has been

considered in this work. For a better comprehension of the proposed approach, our future plan is

to consider both filter and wrapper based feature selection techniques in our experiment. The

rough set can be applied on the dataset to identify the relevant features. For the class imbalance

problem, the other techniques are thought of applying in the dataset and with the comparison and

analysis of the experiment, more important facts can be drawn from the result

44

Bibliography

[1] M. Kakkar and S. Jain, “Feature selection in software defect prediction: A comparative

study,” in 2016 6th International Conference - Cloud System and Big Data Engineering

(Confluence), 2016, pp. 658–663.

[2] K. Dejaeger, T. Verbraken, and B. Baesens, “Toward Comprehensible Software Fault

Prediction Models Using Bayesian Network Classifiers,” IEEE Trans. Softw. Eng., vol. 39,

no. 2, pp. 237–257, Feb. 2013.

[3] A. H. Yousef, “Extracting software static defect models using data mining,” Ain Shams

Eng. J., vol. 6, no. 1, pp. 133–144, Mar. 2015.

[4] D. R. Ibrahim, R. Ghnemat, and A. Hudaib, “Software Defect Prediction using Feature

Selection and Random Forest Algorithm,” in 2017 International Conference on New

Trends in Computing Sciences (ICTCS), 2017, pp. 252–257.

[5] E. A. Felix and S. P. Lee, “Integrated Approach to Software Defect Prediction,” IEEE

Access, vol. 5, pp. 21524–21547, 2017.

[6] A. Nugroho, M. R. V. Chaudron, and E. Arisholm, “Assessing UML design metrics for

predicting fault-prone classes in a Java system,” in 2010 7th IEEE Working Conference on

Mining Software Repositories (MSR 2010), 2010, pp. 21–30.

[7] D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson, “Software defect prediction

using static code metrics underestimates defect-proneness,” in Proceedings of the

International Joint Conference on Neural Networks, 2010.

[8] Z. Li and M. Reformat, “A practical method for the software fault-prediction,” in 2007

IEEE International Conference on Information Reuse and Integration, IEEE IRI-2007,

2007, pp. 659–666.

[9] P. Singh and S. Verma, “An investigation of the effect of discretization on defect prediction

using static measures,” in ACT 2009 - International Conference on Advances in

Computing, Control and Telecommunication Technologies, 2009, pp. 837–839.

[10] H. Wang, T. M. Khoshgoftaar, and A. Napolitano, “A comparative study of ensemble

feature selection techniques for software defect prediction,” in Proceedings - 9th

International Conference on Machine Learning and Applications, ICMLA 2010, 2010, pp.

45

135–140.

[11] R. Malhotra, “A systematic review of machine learning techniques for software fault

prediction,” Appl. Soft Comput., vol. 27, pp. 504–518, Feb. 2015.

[12] J. Singh and S. Sharma, “Fault detection technique for test cases in software engineering,”

Int. J. Eng. Technol., vol. 7, no. 1, p. 53, Jan. 2018.

[13] X. Chen, Y. Shen, Z. Cui, and X. Ju, “Applying Feature Selection to Software Defect

Prediction Using Multi-objective Optimization,” in 2017 IEEE 41st Annual Computer

Software and Applications Conference (COMPSAC), 2017, pp. 54–59.

[14] L. Rokach, “Ensemble-based classifiers,” Artif. Intell. Rev., vol. 33, no. 1–2, pp. 1–39, Feb.

2010.

[15] A. K. Jakhar and K. Rajnish, “Software Fault Prediction with Data Mining Techniques by

Using Feature Selection Based Models,” Int. J. Electr. Eng. Informatics, vol. 10, no. 3, pp.

447–465, Sep. 2018.

[16] R. S. Wahono and N. S. Herman, “Genetic Feature Selection for Software Defect

Prediction,” Adv. Sci. Lett., vol. 20, no. 1, pp. 239–244, Jan. 2014.

[17] Y. Chen, X. H. Shen, P. Du, and B. Ge, “Research on software defect prediction based on

data mining,” in 2010 The 2nd International Conference on Computer and Automation

Engineering, ICCAE 2010, 2010, vol. 1, pp. 563–567.

[18] “(PDF) Enhance Rule Based Detection for Software Fault Prone Modules.” [Online].

Available:

https://www.researchgate.net/publication/252063255_Enhance_Rule_Based_Detection_f

or_Software_Fault_Prone_Modules. [Accessed: 20-Nov-2019].

[19] I. H. Laradji, M. Alshayeb, and L. Ghouti, “Software defect prediction using ensemble

learning on selected features,” Inf. Softw. Technol., vol. 58, pp. 388–402, Feb. 2015.

[20] R. Li and S. Wang, “An Empirical Study for Software Fault-Proneness Prediction with

Ensemble Learning Models on Imbalanced Data Sets,” J. Softw., vol. 9, no. 3, Mar. 2014.

[21] Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu, “A General Software Defect-Proneness

Prediction Framework,” IEEE Trans. Softw. Eng., vol. 37, no. 3, pp. 356–370, May 2011.

[22] Y. Jiang, M. Li, and Z.-H. Zhou, “Software Defect Detection with Rocus,” J. Comput. Sci.

Technol., vol. 26, no. 2, pp. 328–342, Mar. 2011.

[23] A. Singh and R. Singh, “Assuring software quality using data mining methodology: A

literature study,” in Proceedings of the 2013 International Conference on Information

Systems and Computer Networks, ISCON 2013, 2013, pp. 108–113.

[24] C. He, J. Xing, R. Zhu, J. Li, Q. Yang, and L. Xie, “A new model for software defect

prediction using Particle Swarm Optimization and support vector machine,” in 2013 25th

Chinese Control and Decision Conference, CCDC 2013, 2013, pp. 4106–4110.

[25] A. D. Oral and A. B. Bener, “Defect prediction for embedded software,” in 22nd

International Symposium on Computer and Information Sciences, ISCIS 2007 -

Proceedings, 2007, pp. 346–351.

46

[26] L. Jia, “A Hybrid Feature Selection Method for Software Defect Prediction,” IOP Conf.

Ser. Mater. Sci. Eng., vol. 394, no. 3, p. 032035, Aug. 2018.

[27] Q. Yu, S. Jiang, R. Wang, and H. Wang, “A feature selection approach based on a similarity

measure for software defect prediction,” Front. Inf. Technol. Electron. Eng., vol. 18, no.

11, pp. 1744–1753, Nov. 2017.

[28] Z. Xu, J. Xuan, J. Liu, and X. Cui, “MICHAC: Defect Prediction via Feature Selection

Based on Maximal Information Coefficient with Hierarchical Agglomerative Clustering,”

in 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and

Reengineering (SANER), 2016, pp. 370–381.

[29] M. Anbu and G. S. Anandha Mala, “Feature selection using firefly algorithm in software

defect prediction,” Cluster Comput., pp. 1–10, Oct. 2017.

[30] T. M. Khoshgoftaar, K. Gao, and N. Seliya, “Attribute selection and imbalanced data:

Problems in software defect prediction,” in Proceedings - International Conference on

Tools with Artificial Intelligence, ICTAI, 2010, vol. 1, pp. 137–144.

[31] L. Pelayo and S. Dick, “Applying novel resampling strategies to software defect

prediction,” in Annual Conference of the North American Fuzzy Information Processing

Society - NAFIPS, 2007, pp. 69–72.

[32] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking classification models

for software defect prediction: A proposed framework and novel findings,” in IEEE

Transactions on Software Engineering, 2008, vol. 34, no. 4, pp. 485–496.

[33] M. Shepperd, Q. Song, Z. Sun, and C. Mair, “Data Quality : Some Comments on the NASA

Software Defect Data Sets,” vol. 2010, no. 9, pp. 1–13, 2013.

[34] D. Gray, D. Bowes, N. Davey, Yi Sun, and B. Christianson, “The misuse of the NASA

Metrics Data Program data sets for automated software defect prediction,” in 15th Annual

Conference on Evaluation & Assessment in Software Engineering (EASE 2011), 2011, pp.

96–103.

[35] R. G. Ramani, S. V. Kumar, and S. G. Jacob, “Predicting fault-prone software modules

using feature selection and classification through data mining algorithms,” in 2012 IEEE

International Conference on Computational Intelligence and Computing Research, 2012,

pp. 1–4.

[36] Q. Taylor, C. G. Carrier, and C. D. Knutson, “Applications of data mining in software

engineering,” Int. J. Data Anal. Tech. Strateg., vol. 2, no. 3, p. 243, 2010.

[37] J. R. Quinlan and J. R., “Induction of Decision Trees,” Mach. Learn., vol. 1, no. 1, pp. 81–

106, 1986.

[38] G. I. Webb, E. Keogh, R. Miikkulainen, R. Miikkulainen, and M. Sebag, “Naïve Bayes,”

in Encyclopedia of Machine Learning, Boston, MA: Springer US, 2011, pp. 713–714.

[39] N. Deng, Y. Tian, and C. Zhang, Support vector machines : optimization based theory,

algorithms, and extensions. CRC Press, Taylor & Francis Group, 2013.

[40] K. O. Elish and M. O. Elish, “Predicting defect-prone software modules using support

47

vector machines,” J. Syst. Softw., vol. 81, no. 5, pp. 649–660, May 2008.

[41] D. Wang, D. Tan, and L. Liu, “Particle swarm optimization algorithm: an overview,” Soft

Comput., vol. 22, no. 2, pp. 387–408, Jan. 2018.

[42] P. Rao and J. Manikandan, “Design and evaluation of logistic regression model for pattern

recognition systems,” in 2016 IEEE Annual India Conference, INDICON 2016, 2017.

[43] A. S. More and D. P. Rana, “Review of random forest classification techniques to resolve

data imbalance,” in Proceedings - 1st International Conference on Intelligent Systems and

Information Management, ICISIM 2017, 2017, vol. 2017-January, pp. 72–78.

[44] M. Mishra and M. Srivastava, “A view of Artificial Neural Network,” in 2014

International Conference on Advances in Engineering and Technology Research, ICAETR

2014, 2014.

[45] T. F. Crack, “A Note on Karl Pearson’s 1900 Chi-Squared Test: Two Derivations of the

Asymptotic Distribution, and Uses in Goodness of Fit and Contingency Tests of

Independence, and a Comparison with the Exact Sample Variance Chi-Square Result,”

SSRN Electron. J., Nov. 2018.

[46] R. Singhal and R. Rana, “Chi-square test and its application in hypothesis testing,” J. Pract.

Cardiovasc. Sci., vol. 1, no. 1, p. 69, 2015.

[47] M. L. McHugh, “The Chi-square test of independence,” Biochem. Medica, pp. 143–149,

2013.

[48] K. Kira and L. A. Rendell, “A practical approach to feature selection,” Proc. ninth Int.

Work. Mach. Learn., pp. 249–256, 1992.

[49] R. Sathyaraj and S. Prabu, “An Approach for Software Fault Prediction to Measure the

Quality of Different Prediction Methodologies using Software Metrics,” Indian J. Sci.

Technol., vol. 8, no. 35, Dec. 2015.

[50] G. J. Pai and J. Bechta Dugan, “Empirical Analysis of Software Fault Content and Fault

Proneness Using Bayesian Methods,” IEEE Trans. Softw. Eng., vol. 33, no. 10, pp. 675–

686, Oct. 2007.

[51] S. S. Rathore and S. Kumar, “Predicting Number of Faults in Software System using

Genetic Programming,” Procedia Comput. Sci., vol. 62, pp. 303–311, Jan. 2015.

[52] G. Abaei and A. Selamat, “A survey on software fault detection based on different

prediction approaches,” Vietnam J. Comput. Sci., vol. 1, no. 2, pp. 79–95, May 2014.

[53] S. Agarwal and D. Tomar, “A Feature Selection Based Model for Software Defect

Prediction,” Int. J. Adv. Sci. Technol., vol. 65, pp. 39–58, 2014.

[54] K. Fawagreh, M. M. Gaber, and E. Elyan, “Random forests: from early developments to

recent advancements,” Syst. Sci. Control Eng., vol. 2, no. 1, pp. 602–609, Dec. 2014.

[55] C.-Y. J. Peng, K. L. Lee, and G. M. Ingersoll, “An Introduction to Logistic Regression

Analysis and Reporting,” J. Educ. Res., vol. 96, no. 1, pp. 3–14, Sep. 2002.

[56] M. Mishra and M. Srivastava, “A view of Artificial Neural Network,” in 2014

International Conference on Advances in Engineering & Technology Research (ICAETR -

48

2014), 2014, pp. 1–3.

[57] M. Baojun, K. Dejaeger, J. Vanthienen, and B. Baesens, “Software Defect Prediction

Based on Association Rule Classification,” SSRN Electron. J., 2011.

[58] T. Watanabe, A. Monden, Y. Kamei, and S. Morisaki, “Identifying recurring association

rules in software defect prediction,” in 2016 IEEE/ACIS 15th International Conference on

Computer and Information Science (ICIS), 2016, pp. 1–6.

[59] J. Prusa, T. M. Khoshgoftaar, D. J. DIttman, and A. Napolitano, “Using Random

Undersampling to Alleviate Class Imbalance on Tweet Sentiment Data,” in Proceedings -

2015 IEEE 16th International Conference on Information Reuse and Integration, IRI 2015,

2015, pp. 197–202.

[60] S. S. Patil and S. P. Sonavane, “Improved classification of large imbalanced data sets using

rationalized technique: Updated Class Purity Maximization Over_Sampling Technique

(UCPMOT),” J. Big Data, vol. 4, no. 1, p. 49, Dec. 2017.

[61] C. Bunkhumpornpat, K. Sinapiromsaran, and C. Lursinsap, “Safe-level-SMOTE: Safe-

level-synthetic minority over-sampling technique for handling the class imbalanced

problem,” in Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), 2009, vol. 5476 LNAI, pp.

475–482.

Appendix A

List of Publications

International Conference Papers

1. Shamse Tasnim Cynthia, Md. Golam Rasul and Shamim Ripon, Effect of Feature Selection

in Software Fault Detection, 13th Multi- disciplinary International Conference on

Artificial Intelligence, November 17-19, 2019. Kuala Lumpur, MALAYSIA, 2019.

Springer International Publishing, LNAI 11909. https://doi.org/10.1007/978-3-030-33709-

4_5.

Includes Chapter 1, 2, 3, 4, 5(5.1, 5,4).

2. Shamse Tasnim Cynthia and Shamim H Ripon, Predicting and Classifying Software

Faults: A Data Mining Approach, 7th International Conference on Computer and

Communications Management (ICCCM 2019) Bangkok, Thailand, July 27-29, 2019.

(ACM Indexed). https://doi.org/10.1145/3348445.3348453.

Includes Chapter 1, 2, 3, 4, 5 (5.2, 5.3).

https://doi.org/10.1007/978-3-030-33709-4_5
https://doi.org/10.1007/978-3-030-33709-4_5
https://doi.org/10.1145/3348445.3348453

