RESTAURANT MANAGEMENT
SYSTEM

SamihaTahsin
2015-2-50-008

Taslima Yasmin Tarin
2015-2-50-022

A project is submitted in partial fulfillment of the requirement for the degree of
Bachelor of Science in Information & Communications Engineering

Supervisor
Dr. Mohammad Arifuzzaman
Assistant Professor
Department of Electronics & Communications Engineering
East West University

WESI

UNIVERSITY

Department of Electronics & Communications Engineering
EAST WEST UNIVERSITY
Dhaka-1212, Bangladesh
September, 2019

Declaration

We, SamihaTahsin and Taslima Yasmin Tarin, hereby, declare that the work presented in this
project is the outcome of the investigation perform by us under the supervision of

Dr. Mohammad Arifuzzaman, Assistant Professor, Dept. of Electronics and Communication
Engineering, East West University. We also declare that no part of this project has been or is
being submitted elsewhere for the award of any degree ordiploma.

Countersigned Signature ofStudent
Dr.MohammadArifuzzaman (SamihaTahsin)
Supervisor ID:2015-2-50-008

(Taslima Yasmin Tarin)

ID:2015-2-50-022

Letter of Acceptance

This project entitled “RESTAURANT MANAGEMENT SYSTEM: A E-commerce
Site For Fast-food Products Where Customer Can Connect to a Restaurant With Its
Menu Through Mobile” submitted by SamihaTahsin (ID:2015-2-50-008), Taslima
Yasmin Tarin (1D:2015-2-50-022) to the Department of Electronics and Communications
Engineering , East West University, Dhaka, Bangladesh is accepted by the department
impartial fulfillment of requirements for the Award of the Degree of Bachelor of Science

in Information and Communication Engineering on Summer,2019.

Supervisor

Dr. Mohammad Arifuzzaman
Assistant Professor
Department of Electronics and Communication Engineering

East West University

Chairperson

..........................

Dr. Mohammad Moseeur Rahman

Associate Professor and Chairperson
Department of Electronics and Communication Engineering
East West University

Abstract

Portable based exchange are among a few of the quickest developing zones in Data Innovation
nowadays. The development presents assorted opening more especially in supply and
dissemination of products and administration beneath the more extensive umbrella of m-
commerce since numerous buyers would advantage by having implies of making orders utilizing
their portable gadgets. A major common problem facing typical ordering systems in restaurants is
that customers have to depend on waiters for getting the menu, order to them which makes things
a little bit of harassment as they had to wait for waiter’s longtime sometimes. In order to solve
this problem we have developed a mobile application for restaurant management and user both
where no waiter service exists in between customer and restaurant while ordering food.The app
will offe the ability to manage accounts,orders and activitie related to it. It should offer good GUI
for easy use and a faster way to complete user requirements. The app will communicate with
restaurant web applications.

Acknowledgement

As it is true for everyone, we have also arrived at this point of achieving a goal in our life through various
interactionswithandhelpfromotherpeople.Wewouldnotliketomakeefforttofindbestwordstoexpress our
thankfulness other than simply listing those people who have contributed to this project itself in an
essential way. This work has been carried out in the Department of Electronics & Communications
Engineering at East WestUniversity.

First of all we would like to express our deepest gratitude to the almighty Allah for his blessings
on us. Next, Our special thanks go to our supervisor Dr. Mohammad Arifuzzaman, Assistant
Professor,DepartmentofElectronicsandCommunicationEngineering,EastWestUniversitywho give
us this opportunity, initiated us into the field of “ Restaurant Management System” , and without
whom this work would not have been possible and their encouragements, visionaries and
thoughtful comments and suggestions and unforgettable support. We would like to thank all
friendswhogiveexcellentcollaborationduringperformanceevaluationstudiesforoverallsupport and
helpful suggestions in solving tricky technical problems. Last but not the least, we would like to
thank our parents for their unending support, encouragement andprayers.

There are numerous other people who have shown me their constant support and friendship in
various ways, directly or indirectly related to our academic life. We will remember them in our
heart and hope to find a more appropriate place to acknowledge them in the future.

SamihaTahsin
Taslima Yasmin Tarin

August,2019

List of Figures

Figure 1: Mobile FOOUAPPUSAJEocuveiieieciiciie ettt sttt sraete e e sreene e 5

Figure 2: Android ApplicationStartingINterface ... 13
Figure3: Get started as USErOrreStAUIANTc.ccviiiveiiereeieseese e see e sre e e e e e e ee e sae e 14
FIQUIE 42 LOGIN PAGEe ettt sttt bbbt bbbt bbb e et e et st be e 14
Figure 5: REGISIIAtION PAGEcveueiteitiiteitieii ettt sttt e b b 15
FIQUIe 6: RESTAUIANT TIS.......cooiiiiiieiiiccce bbb 15
Figure 7: USermMenUINTEITACEccuviieiie ettt et ra e e e neenne e 16
FIQUIE 8. 1OgOUL PAGE ... ettt bbbttt n bbb 16
Figure 9: ReStaUraNtLOGINPAGE.ccveiviieitirieiti ettt bbbttt 17
Figure 10: Restaurant’s “MYMENU”ccoueieieiierieiiesiesie st 17
Figure 11: Add item tOMAINMENUccueeiiiiieiieciie e e e et e e sra e eesaesraesreenesreesreeneeas 18
Figure 12: Updated menu after addingneWitemcooiiiiiiiiiieesic e 18
Figure 13: update the item name INMAaINMENUL.cccveieiieiece e 19
Figure 14: Restaurant owned QR code SCaNNEADYUSENcceiiiiiiiiieree s 19
Figure 15: Database Construction for the EateryRequestingFrameworkcccocveveiiieieennns 20
Figure 16: BaCKeNdSEIUPPAJEcveivieieeieciee ettt e e steenenneesneeee s 21
Figure 17: New project CreateiNFIrehaSsEc.ccviieiieiicic et 21
Figure 18: FirebaseauthentiCationiNterfaCe.........c.coveieiiiire i 22

Figure 19: Database interfacefromfireDasecccvevviieiiiiiiic e 22

Figure 20: Storage interfaceinfirebaseccovoviiiiiicii e 23
Figure 21: Restaurant menu ShOWN tOthe USENccvciiiiiiiciece e 24
Figure 23: USEIrCNECKOULPAGEoviiviitiiteitieiieie ettt bbbttt 25
Figure 24: Restaurant confirms thefoodorder............coovoiiieie e 25
Figure 25: Order confirmation MEeSSAJETOUSEcveiviriiriirieriesie et 26
Figure 26: Restaurant confirm about startingofcookingccccccvevveiiiiiii i 26
Figure 27: Food Deliveryprepare NOtITICAtIONccoviiiiiiiiiiiiiieee e 27

Figure 28: FOOU IS UEIIVEIEAc.veeiiiieiieie ettt sne e 27

Vi

Table of Contents

Declaration of Authorship
Letter of Acceptance
Abstract

Table of Contents

List of Figures

(O gT=T o) (=] SRS 3
a0 oo 114 o o USSR 3
I Yo 117 LA o] OSSPSR 3
1.2 SCOPE OF TN PIOJECE ...ttt sttt et et e e be et e s beese e besaeestesbaestesbeeteesbesreeneenteans 3
1.3 ProjeCt OVEIVIEW STALEIMENT:ociiiiiiiitiitiiteit ettt bbb ettt b bt nenn e 4
(O3 0 F=1 o] =T TP P TP S TSP PP PP PP 5
LITERATURERENVIEW ..ottt sttt ettt sttt e st st e b st et nte e n e 5
2.1 Mobile Technology Usage iN theWOTTU...........cooiiiii e 5
2.2 Mobile App Usage iN Tthe WOTTG..........oiiiiiie bbb 5
2.3 Restaurant/Food Apps USAge NAVE INCIEASEA.........cuiiiiieieiiecie ettt re st sbe b b s re e e 5
2.4 Existing Solutions for Ordering CommMOGItIES.uirirti e e e e 6
2.5 REIALEA WOTK. ... et e e e e e e e (6-7)
(O gT=T o) (=] g USSR PRRPRPP 8
Technological FOreground & ANAIYZE ...ttt 8
3.1 TechnologiCal BACKGIOUNGcoviiiieiiiiiitiitcete ettt b bt n e 8
3L L ANGIOIA STUAIO ...ttt b et ettt b e bt s bt st b e b e et e e eneenesbesae b ee 8
B L 2F UL .ttt h b bbb bt n e h e bbbt b b et e b et e st neebenae b e 8
KT IC T AN (o] o1 I RSSO 8
B LA RIS, .o 9
3 ANy SIS, ot 9
3.2 L ANAIOId STUAIO. ..ot e 9

(O gT-1 o) (-] PSSR 10

System Development MethOTOIOgYeeeeeeeerieeeerirrnreereeiiceesssneeeeesssssessssssnseessssssssssssnssessssssssssssnnssssnes 10

4.1 Development MEtNOAS USEUcc.cueieiriririerierteei ettt sttt nee s 10

4.2 Rapid application development METhO...........coviiiii i e e 11
L] 1) 171 12
System Design AN AFCHITECTUNE...........c.ccuiuiiccceeeee e 12
5.1 Analysis of System DesSign REGUITEMENTSc.ccviiiiiieieiii et sre et et sre e e re e 12
L] 121 0) Y 13
SYStemM IMPIEMENTATION..c. ittt re e e e eeeneeneeeenesaesassnssnssnssnssnssnnsnnsnns 13
6.1 ToOols for SyStem DEVEIOPMENTocviiiii ettt et sbeese e besreesbesreeneesreeres 13
6.2 SYSTEM IMPIEMENTALIONeoiiiiicie e e s te e st e s teesbesbeese e besreeeestesneesrenres 13
6.2.1 MaiN STArtING DESION ...veeereiicteeie ettt ettt et et e e st e s be et e s teebe e besteess e beeasessesseensestesseensesseenes 13
6.2.2 User RegiStration & LO@IN.ouiuintiit ittt ettt et e e e et e e e eneens (14-15)
6.2.3 ATLEr LOGIN PrOCESS......c.ciicvitectete ettt eee et sttt et st es st et ess s ses st sss et et et e b sassns s et srs st st tesabasesenssenenssaes (15-16)
6.2.4 Restaurant Registration & LOgIN........c.ovuiiiiiiit it et ettt et et e e e eaeaan 17
6.2.5 Restaurent Menu create, Add ItEMS, EQIt IEEIMSoooveeeeeeeeeee ettt e eeee e e e e eeee e e e (17-19)
6.2.6 RESTAUIENT QR COUEvevieieieeie sttt ettt te et e s teeseeseeeteesaesreeseenbesreeaesreeneenennnen 19
6.3 Backend Process OF the SYSIEMcciiiiiecc e st sbe e ta et e s reesbesre e e e steenes 20
6.3.1 Database DESIGN ANGIYZEcc.ooiuiieieieie ettt ettt b ettt n bt se e b e 20
6.3.2 Firebase Setup & WOIKING PIOCESSicvevieiieierieseeeieseetesteseesteseessestesseessessesssessesssessessesssessessenns (20-23)
D T 7. e 24
System TestiNg g & EVOIULION.........c..ooiiii et st be e ra e besae e re e 24
7.1 System TeSEING OPEIALIONccuiiiiiriiteieee ettt bbbttt ettt b enes (24-27)
7.2.1 Evaluation OF the QULCOIMEoiviieieiiee sttt ste ettt ste st esaesaeeseenteaneesaesreeneeneennen 28
A =X (o V1o a1) O T 1o SRS 28
7.2.3 EVAlUALION OF SCNEIMES.......couiitiitiiiieieee ettt sttt b e st b ettt s e ebe b e e e 28
AP T 8. .o e 29
FULUIE & CONCIUSION. ... ettt e e e e e e e e es 29
8.1 FULUIE OF TN SYSTEIM ...ttt bbbttt bbbt e et e bt r e 29
8.1.1 AQVANCE RESEIVALIONS.eeiieeieeeiteeierie et ste et et ettt et e st e e e s tesatebesaeeneesseeseesteeseensesteeneansesneensesaeensesaesneans 29
8.1.2 RALINGS & REVIBWS ...ttt ettt et et s bt et e s te e s e besaeeseesseeneestesaeensesteeneansesneensesaeensenaesneans 29
8.1.3 Discount & DealSs TOr CUSIOMEISeeiuereieiieteeierie ettt ste sttt e st e te st et e tesseetesteeneesesneensesaeensesaeeneans 29
S0 o To] 1D (o] o PSSR 30
=] (=] oSSR 31
F N o] o1=] g [0 [0t ((oo [-) I TSP TSP R PP PP (32-60)

Chapter 1

Introduction

We dwell interior the age of information advances. It’s energetic our lives and making it less
demanding. Since we've got found the adaptability of innovation and grasped it as a serving
to device, we've got abowedto doto create it encourage valuable. Innovation isn't remaining the
same; it's energetic and up about day by day.We are preoccupied with the wish to make new
technology better. There was innovative intrigued in versatile gadgets and tablets after the trend of
PCs & laptops.In 2014, the amount of mobile users reached the same amount as desktop
users(almost 1,700 milion users) and that number is still increasing[1].Keep with a figure of
the data reason entry Statist, since 2015, the amount of dispatched tablets are going toto
be bigger than the sum of transported tablets and portable workstations on [2]. Companies are
realizing this modern drift and beginning to consider the versatile exchange over ever some time
recently

1.1 Motivation

Within the past five a long time, there are huge deluges of customers/guests derogative fast-food
eateries around the world altogether interior the created nations. On the elective hand, clients are
tired of holding up on the line for long hours before being served [1.0n the advertise, there are many
devices with utterly totally diverse coding system bundle and equipment, making the duty of
the code bundle engineers loads of unpropitious. One among these steps was to trade desktop
application. An advantage of internet applications is that they're doing not place confidence in the
platform where they run.[2] There’s to boot a simple because of update applications for all users.
Another advantage is that everybody computations are resolved on a server; therefore it'll run on
devices with outdated hardware nonetheless. Keep with associate increasing kind of mobile and pill
users, mobile applications are convenient.

1.2 Scope of the project

Due to the focuses in time of this extend we tend to tend to need to slim the scope. The scope of
this extend is to create Relate in Nursing exemplification of application that's prepared to attach with
the take separated server and manipulate with information.[3] The exemplification have to be have
input interface that's prepared to post to the server any entered data and posting interface where
certain information are advancing to be recover from server and shown to the client. Collectively
at interims the scope of this venture to speak to nuts and bolts of robot advancement and one of the
internet administrations like take separated.

1.3Project Overview Statement:

The aim of this project is to make an android food app as a mobile application. So we have made a
food app which we have named it “SPICE JAR”. It is to be used by the common people as customers
who wants to order in restaurant with no delay and offers them the ability to manage accounts and
order foods by sitting in the restaurant with the help of scan a particular gr code which every

3

restaurant will have their own. There will be no waiters to serve restaurant menu or taking orders
from the customers. It will be very convenient for the customers and will be beneficial for the
restaurant management system.

The idea of our app “SPICE JAR” comes from one of a coffee shops in Dhanmondi, Dhaka city.
That shop use their own code by which customer can see their menu by using the given code but
cannot order from it. So we give a thought and think that if we can make a mobile app by which
people can order any type of food directly and It will be worked on devices with Android and Apple
operation systems .and offered the same possibility as a web application, which is the aim of this
project. It will be logically designed and offer the ability to accomplish any task quickly and
properly. It will also offer understandable GUI for any user. Our
appwillbeofferedonlyforAndroiddevices, specificallyfocusedtotablets. Theapp will communicate with
restaurant web application over REST API. The result of this project is the app, which would be
deployed and available for use.Ourapplication and customer boththese wouldbe:

e Create an account of their own

e Make an order for own account

e By scanning QR code user can get the restaurant menu
e Order directly

e Restaurant will confirm the order

e Both will get notification

Chapter 2

Literature Rereview

2.1 Mobile Technology Usage in theWorld

The increment among the inconstancy of versatile cell phones inside the world has been fabulous.
The chart underneath appears supporter development between 2005 and early 2013, in line with ITU
figures. The 6.8 billion endorsers are drawing closer the seven.1 billion world populace. the standard
world infiltration stands at ninety six.2%, in line with the ITU [4].

2.2 Mobile App Usage in the world

With over a combine of 7 billion smartphone clients over the world, there is no astonish that the
versatile app exchange is thriving. App utilization and smartphone infilteration are still developing at
a delicate rate, with none signs of speed down inside the unsurprising future.

2.3 Restaurant/Food Apps usage have increased
As of late, nourishment and eating house apps have seen marvelous development among a center
group of onlookers, joined togather Countries office decide as nourishment darlings. Indeed,

the utilization of nourishment and eating house apps have hyperbolic by seventieth since 2014, to its
current standing of thirty fourth.

1in 3 Foodies Using Food/Restaurant Apps

Use of Food/Restaurant Apps Among Foodies*

2014 2015 2016 2017

Figure 1. Mobile Food App Usage

2.4 Existing Solutions for Ordering Commodities

Paper based completely requesting frameworks are wide utilized in eateries as of now. Papers are
utilized in eateries for showing the quality nourishment menus, taking down the

customer’s arrange and putting away the customer’s orders. The impediments of

paper essentially based framework are that papers will get basically broken by recolor marks, they
will be crushed all through fires or mishaps, are awkward to handle and upgrade changes or

will ordinarily float. Consequently, time and cash are squandered. As antiquated menu cards are
paper essentially based, any changes ought} to be made inside the menu require distribution of

the total menu card, coming about in wastage of paper, time and cash [6]. On tall of

that, reason of Deals frameworks are utilized in eateries wherever a organize of cashiers and server
terminals ordinarily handle nourishment orders, transmission of orders to the room

and intuitively charge posting

to visitor profiles.Reason of Deals information are regularly outside to bookkeeping and nourishmen
t cost/inventory program bundle bundles and

thus the frameworks too can create numerous administration reports. The biggest impediment of this
method is that after there's a web blackout a private can’t get to the framework making them result to
the manual framework [7]. Customers take note it wearing and time strongly to line in eateries for
long hours as they expect their orders to be prepared. It’s furthermore a genuine issue

for benefactors Joined together Countries office arrange on-line to look for out confusing interfaces
that they will scarcely utilize or perceive. Finally, openness to boot a challenge confronting a

few eateries since with the sharp increment of buyers requesting on-line having Associate in

nursing requesting framework that's not versatile neighborly might have a negative affect on the
ultimate sales. In arrange to defeat these challenges, the implies forward is

to create a versatile application that empowers clients to put orders from the consolation of

their possess homes, set the time they require to select the arrange and for those that need to eat from
the structure, it gives them a chance to arrange a table.

2.5 Related Work

We inspired to make this mobile food application by researching some of these food application.

Food Panda:

Lunched on Nov nineteenth, 2013 in People's Republic of Bangladesh, Food Panda is a superb on-
line food delivery system. individuals will order differing types of food from their partnering
restaurants, and that they are going to be delivered at your home for

free! individuals pays as presently as they get the food delivered. No MasterCard is needed to order
food, no advance payment.

HungryNaki:
Hungrynaki.com could be a Bangladeshi on-line Food Ordering and Delivery Service launched in

2013 to deliver your cravings at people's doorsteps.

Uber Eats:

Uber Eats, the nourishment conveyance app by ride-hailing company Uber, is prepared to dispatch in
Bangladesh in April 2019, with Dhaka as its 1st town. the same as the Uber rides app, Uber

chow may be a nourishment conveyance app that makes a

difference bring nourishment to customers.

Pathao Food:
Pathao Food may be a new service from ride-sharing company Pathao. Anyone will order foods
from any close restaurants through Pathao food service.

All these food apps are for home delivery. Though they are very popular in our country but
sometimes we suffered a little bit for traffic jam, not well-behaved service man or sometimes
connectivity delay while ordering home delivery. Among all these food delivery apps The app that
we have created is restaurant and user based where user can get the menu by scanning a specific gr
code and can also directly order from that app sitting in the restaurant. That will make more time
consuming for both user and restaurant as here no service man is needed.

Chapter 3

Techknowlogical Background & Analyze

Foundation hypothesis in this venture work serves as prophase for creating an application. That
permits us to get it more compatibly the principles and innovations of Android advancement and can
allow us thought almost assist structure of model extend.

3.1 Technological Background

3.1.1 Android Studio

Android Studio is the official integrated developmenmt environment (IDE) for Google’s Android
operating system,built on JetrBrains’ IntelliJ IDEA software and designed specefically for android
development. It is available for download on Windows, macOS and Linux based operating systems.
It is a replacement for the Eclipse Android Development Tools (ADT) as the primary IDE for native
Android application development.

3.1.2 Flutter

Flutter could be a free, ASCII text file mobile SDK that may be want to produce native-

looking android and iOS apps from identical code base. Being in beta for a jiffy, Flutter 1.0

was formally launched in December 2018. The main plan of Flutter revolves around widgets.

In terms of recognition, Flutter is making good progress. Whereas Flutter had created it to the very
best 100 package repos supported GitHub stars by the time unleash preview one was declared in
June 2018, it's up among the ranks and is presently among the very best thirty. This, whereas not a
doubt, can be a promising trend. Thousands of Flutter apps have created its because of app stores,
among these the Alibaba app with fifty million users. Browse heaps of regarding what the Flutter
team has to mention concerning their initial stable unleash and what’s on their product roadmap for
2019.

3.1.3 Adobe XD

Adobe XD might be a vector-based apparatus created and uncovered by Adobe Iragi National
Congress. For coming up with and prototyping user expertise for web and versatile apps.

The software package is on the showcase for macOS, Windows, i0S and

android.it's primarily associate degree UI/UX coming up with application like Sketch in my
opinion, it's bunch of tools like pen tool , choice tool etc. coming up with in XD is easy.

It’s supported the Adobe conventions. If somebody accustomed add Adobe Software’s like
Photoshop &lllustrator; they'll work with XD terribly simply and expeditiously. Similar

to in creative person of Sketch you'll have multiple artboards. An enormous disadvantage is that It
doesn’t have layers (yet).

3.1.4 Firebase

Firebase may be a Backend-as-a-Service — BaaS — that begun as a startup and developed up into a
next-generation app-development stage on Google Cloud Stage. Advance given engineers Relate in
Nursing API that permits the blend of on-line chat utility into their websites.

Designers were design Advance to control application data like diversion state

in genuine time over their clients. Templin and Lee set to partitioned the chat framework and
conjointly the elemental amount fashion that fueled it.[8] Firebase's to begin with item was

the foot of operations essential amount information, Relate in Nursing API that synchronizes
application data over i0OS, Android, and web gadgets, and stores it on Firebase's cloud.

3.2 Analysis

3.2.1 Android Studio

For our project, we tend to are reaching to use android Studio as a result of the official IDE
for mechanical man Application development [13]. Mechanical man studio offers an honest setting
with logical structuring. Interface of applications are usually written as a XML file, by victimization
graphic interface. The appliance would be running over degree mechanical man person or tested on a
tool with android connected to our laptop. Mechanical man Studio offers many choices and makes
the event of applications loads of intuitive.

Chapter 4

System Development Methodology

4.1 Development methods used

Developing applications for associate android device are often drained many various ways that.
One possibility is to use the android software Development Kit (SDK) and make a native
application. an alternative choice is to utilize mobile unifying technologies like Phone Gap or
Xamarin which might create building applications for multiple in operation systems faster and
easier to keep up.
There are somerenowned methods that are very popular to worldwide for software system development
purpose. Those are described briefly below:

» Agile:

Agile computer code improvement might be an abstract framework for endeavor computer

program designing comes.

» Waterfall:

The water demonstrate may be a sequent improvement approach, inside which improvement is seen

as streaming unfaltering down (like a waterfall) through numerous stages.

» Scrum:

Scrum characterizes a flexible, all-encompassing improvement technique wherever

a improvement group works as a unit to realize a standard goal. Extraordinary level of being
programmed: Extreme Programming approach (XP) refers to relate spry computer
code building technique. It had been made to dodge the occasion of capacities that aren't by and
by required. It adapted toward the creation of a top-notch last item with no respect for visit changes
in needs.

» Spiral:
The Winding technique amplifies the Waterfall show by including quick prototyping in
an exertion to combine points of interest of top-down and bottom-up concepts.

» Extreme Programming
Extreme Programming approach (XP) alludes to an spry computer program building strategy. It
was made to dodge the improvement of capacities that are not as of now required. It pointed at the
creation of a top-notch last item with no respect for visit changes in necessities.

10

4.2 Rapid application development method

Rapid Application Development (RAD) Methodology is made to require the foremost advantage of
the occasion code . It pointed to scale back the number of development required to form a item.
RAD may be a condensed advancement strategy that produces a high-

quality framework with moo speculation costs. It’s potential since of

the adaptability to rapidly adjust required things. It adapted toward giving quick results. RAD
(quick application advancement) proposes that item will be created faster and of upper quality by:
Using workshops or center groups to gather necessities

Prototyping and client testing of styles

Re-using computer program bundle parts
Following a plan that concedes fashion improvements to future item version
Keeping survey conferences and elective group communication informal

YV V V VYV

11

Chapter 5

System Design and Architecture

5.1 Analysis of System Design Requirements

A request or any kind of prerequisite is any work, limitation, or property that the framework ought
to offer, meet, or fulfill so as to meet its reason. The objective of inquire about is to
supply fundamental needs.

There are some requirements that are considered as functional requirements, as follows:

>

>

>

>

>

The handle ought to have body capacities where the pc client is ready to

update, erase and include modern things into the electronic nourishment menu.

The handle need to have authorization capacities where the framework is ready to draw a
line between clients and conjointly the director of the framework by creating user profiles
with passwords.

The process need to have associate external interface for supporters to position their orders
and at steady time book a table.

The prepare need to have a wicker container which can hold all nourishment things chosen
by the customer for purchase.

The handle ought to naturally calculate the common for arrange created.

There are some requirements that are considered as non- functional requirements, as follows:

>
>

>

>

Prioritizes the essential capacities of the framework backed the method usage patterns.

The method must be compelled to be able

to hold information made inside the framework for academic degree extended time while not
the data being adjusted by the system.

Representation: The method needs to be compelled to have such reaction times

as scholastic degree illustration the arrange set need to be sent right away to the house and

a reaction have to be be sent to the supporter all through a} awfully most of 3minutes.

The prepare needs to be compelled to be fetched- successful once it includes maintenance.

12

Chapter 6

System Implementation

6.1 Tools for System Development

This framework plan is part into 2 fundamental class’s particulerly the shopper or client viewpoiunt,
diverse one is that the structure administration viewpoint. The reply was implemented on a area
premise giving a one of a kind common sense in each stage as stipulated inside the venture set up.

The extend was upheld use Windows 10, Firebase, Adobe XD, Android Studio. By the time all the
stages were total, all the functionalities required inside the reply were met.

6.2 System Implementation

6.2.1 Main Starting Design

Spice Jar

Spice Up Your Test Bud

Figure 2: Android Application Starting Interface

As this android app has two sides user & restaurant management, so at first we will described about
the user interface side.

13

6.2.2 User Registration & Login

Spice Jar

] @ <

Figure3: Get started as user or restaurant

After started the app, one will select themselves from here as a user or restaurant admin If he or she
is a user, then he or she will enter the user button. And then will go to the next page that is:

Login

Email
tahsin.samil1239@gmail.com

Login

New user? Create an account

L] @® -

Figure 4: Login page

14

If user does not have profile, then they will to the option “create an account” and will get this page:

< Register

Name

Email

Password

Mobile no.

Address

Register
[] @ «

Figure 5: Registration page

6.2.3 After Login Process

spice chicken
aftabnogor

01689770427

Restaurant
Demra, Dhaka

w ! 01521207955

Coffilicious
45,Baily road
01832244462
m—s
5
] @ <

Figure 6: Restaurent list

After login, user can see the restaurent list from their account. There is a red button on the bottom of
right side which one is for scan the QR code of any particuler restaurent.

SAMIHA TAHSIN
tahsin.sami1239@gmail.com

Restaurants
Orders

Logout

L] @ |
Figure 7: User menu interface

They can logout after complete their orders. It will seems look like:

10:52 PM

Do you really want to
logout?

Cancel

Logout

Figure 8: logout page

6.2.4 Restaurent Login & Registration

< Login
Spice Jar

Limail
coffee.201 S@gmail.com

Password

Login

New user? Create an account

- - - - @ -

Figure 9: Restaurent Login Page

If any restaurent wanted to open any account for their restaurent they need to go the same option
Create an account” and will get the same registration page as previously given.

6.2.5 Restaurent Menu create,Add Items, Edit Items

11:09 PM © attl Ll =

Chocolate Garlic Bread
Pestry 250.0

150.0

Chicken
Mashroom
Soup
300.0

e

] @ <
Figure 10: Restaurent’s “My menu”

13

17

If restaurent want to add any item to their menu, they will use the plus button to add.

-

Add Item

Add Item

[@ < [] @ <
Figure 11: Add item to main menu

11:15PM © il all =

ﬁ !ai
Chocolate Garlic Bread
Pestry 250.0
150.0
p——"
%' =}
Chicken Chicken
Mashroom Sandwich
Soup 200.0

300.0

[] @ <
Figure 12: Updated menu after adding new item

Restaurent management can edit their item any item. This edit button will work then.

Chocolate
Pestry
150.0

Chicken
Mashroom
Soup
300.0

] @ < -

Figure 13: update the item name in main manu

6.2.6 Restaurent QR Code

11:09PM ©

Figure 14

11:09 PM &

: Restaurent owned qr code scanned by user

e
i
Garlic Bread
250.0

Chicken Grilled
Sandwich
200.0

S

19

6.3 Backend Process of the System

The application backside is enforced on base that is straightforward to utilize,
has simple application facilitating, capacity to
line client confirmation, comfort of information analytics

and facilitates strategy of controlling, erasing, and re-ordering information inside the information.

6.3.1 Database Design Analyze

Sometime recently working with data in any field, at first we'd like to get a handle on that in any
case will a data have to be be planned. Figure

fifteen appears the data pattern, totally distinctive application table and their connections.

It characterizes how the data is organized and the way the relations among them

are related and defines all the limitations that are connected on the program bundle.

Administrator

Menu

Orderltem

¥ Orderld
Foodld
Quantity
UnitPrice

¥ Menuld
Price
StartDate
EndDate
FoodID

Customer

¥ CustomeriD
Email
Phone no
Fname
Lname
PaymentiD
FoodID

? Adminld
FName
LName
Username
Password
Status
MenulD

Foodltem

% Food ID
Name
Quantity
Unit Price
ItemCategory

Order

¥ OrderlD
OrderDate
Customerld
Quantity
PickupDate

Payment

Chef

Paymentld
CustomerlD
OrderlD
PaymentDate
Amount
PaymentType

¥ Chefld
LastName
FirstName
Username
PhoneNumber
Password
Orderld

Figure 15:Database Construction for the Eatery Requesting Framework

6.3.2 Firebase Setup & Working Process

As base of operations implement all the back-end applications of a system, thus this can
be for watching, news and administration of the applying. Figure sixteen shows a part of the
backend.

20

@ Firebase

Your projects using Frebase IMPORT GOOGLE PROJECT

@

Explore a demo project

Your projects currently at Firebase.com

Don't see your projects from Firebase.com? Click here to fink your account

Figure 16: Backend Setup Page

After create a account in firebase, we create a new project called “restaurant”.

Your Firebase projects

restaurent
restaurent-20956

+

Add project

Figure 17: New project create in Firebase

After enter to the restaurant project, we can see these options against this project. That is:

’j Firebase

Develop

Authentic

21

In the ‘Authentication’ part, all the names and information of users and restaurent are shown that are

registered to this app.

Go to docs

Templates Usage

Q, search by email address, phone number, or user UID Add user c

Identifier Providers Created Signed In User UiD

tarintrm22@gmail.com Aug 3, 2019 Aug 4, 2019 JICV31JUwWrQKViTWMOo0ofLa3POT...
restaurant@gmail.com Jul 30, 2019 Aug 16,2019 X5KrjlhHrONXy8xMWecgF TEH4X8D2
coffee.2015@gmail.com Aug 3, 2019 Aug 17,2019 kocUpS9EMUcS2d710RiCsqa2yY 133
tahsin.sami1239@gmail.com Jul 30, 2019 Aug 16,2019 uYlskBxsEdTwPhIDpN3n3nxR2dy2
shafayat@gmail.com Jul 30, 2019 Aug 16,2019 wZVXHILOBY X7 SyFmrJgjMgpNe...

Figure 18: Firebase authentication interface

In ‘Database’, all the data of users, restaurants or all type of order are being stored.

Database ‘S Cloud Firestore

Data Rules @ Indexes Usage

M > client » uvIskBxsEdTwP..

/= restaurent-20956 |W client = = B uYlskBxsEdTwPhIDpN3n3nxR2dy2
<+ Start collection -+ Add document -+ Start collection
client > JtCV31JUwrQKVi1WMOBfLa3P0TR2 orders
orders uY1skBxsEdTwPhIDpN3n3nxR2dy?2
restaurants wZVXHILOBY fx75yFmrJ9jMgpNem2
+ Add field

address: "62Shantinagar”
email: ‘tahsin.sami1239@gmail.com”

id: "uYlskBxsEdTwPhIDpN3n3nxR2dy2"

Figure 19: Database interface from firebase

22

In ‘Storage’, all type of images or cotes that are used in this app are being stored.

Rules

=

O

Usage

gs://restaurent-20956.appspot.com

Name

* Default security rules require users to be authenticated

O Oo O o o

D 337u31g8e1gC3BAOdCEZKUVIBRY 1/

D JICV31JUwrQKVilWMOOfLa3POTO2/

[kocUpS9EMUCS2d7I0RiCsqa2yY T33/

:| utiFQI7zATX5mUAM350J0PgLFC)1/

[uYlskBxsEdTWPhIDpN3n3nxR2dy2/

:| WZVXHILO8Yfx75yFmrJojMgpNem2/

Size

Type

Folder

Folder

Folder

Folder

Folder

Folder

Figure 20: Storage interface in firebase

4 Upload file [+]

Last modified

Learn more

Dismiss

23

Chapter 7

System Testing & Evalution

7.1 System Testing Operation

Testing is that the procedure of assessing a program to distinguish varieties between the given input
and so the anticipated yield. It’s together essential in surveying the choices of a program

and evaluating the quality of the merchandise. Now to test our app, we are going see that how

this gap requesting prepare is completed from both side Clint & Restaurant.

1. At first user will login and will go to a restaurant from her list that is named ‘Coffilicious’. And
then it will show the menu that the ‘Coffilicious’ restaurant belong.

spice chicken
aftabnogor
01689770427

Restaurant
Chicken Mashroom Soup

Demra, Dhaka & y
2 TR TS Clear chichek soup with
mashrooms B

300.0

Coffilicious
45,Baily road

01832244462
Chicken Grilled Sandwich
A testy sandwich filled with
chicken breast pieces and garlic
mayonies,capcicum,red chilli
200.0 i
m @ -] @® <

Figure 22: Restaurent menu shown to the user

24

2. Then user will select items, keep it to the cart and checkout to conferm her order.

<« Checkout

Chicken Mashroom Soup >
Price: 300.0 1
Total Price: 300.0 b 4
Chicken Grilled Sandwich -
Price: 200.0 1
Total Price: 200.0 v

Clear chichek soup with Subtotal ______________________ 500.0
aehiaime e vat+sD______________________ 110.0
300.0 -1 4 Total 610.0

Confirm Order

Chicken Grilled Sandwich

A testy sandwich filled with

chicken breast 2]
mayonies,cap x 2 ITEMS

200.0 = e

[] @ < L] @ -«

Figure 23: User checkout page

3. Every food item generates with a code number. When user confirm her order then the chief will

get a notification with user name, mobile number and code number of food.Then user will
paying the bill in the booth, then from booth, it will be confirmed in the kitchen that the user

have paid her bill. After that the chief accept the order request and user will get a order accepted

message in user’s mobile.

Jdeci) - <« Order Details

Sat, Aug 17 S atl il = CGED
SAMIHA TAHSIN

1566062409855
1 e 01915561178

& Today: 10.3MB

Chicken Mashroom
- S .& Soup
) = Quantity: 1
Price: 300.0

Total Price: 300.0
Il spice Jar - now
1566062409855

Order PENDING 2= Chicken Grilled
.+ Sandwich
Quantity: 1

Price: 200.0
Total Price: 200.0

Subtotal ______________________ 500.0

Vat+sSD __ 110.0

Total 610.0
[] [C] -

Figure 24: Restaurent confirm the food order

25

4. Then user get a message to her mobile about the confirmation of her order that it has accepted.

M2

Sat, 17 Aug 2t © .l

r @ v @

- Spice Jar - now
1566062409855
Order ACCEPTED

Figure 25: Order confirmation message to user

5. Restaurent will moving forward, use the butten of * START COOKING’ , and again user will get
another notification about this.

< Order Details _I _I i 2_'

SAMIHA TAHSIN Sat, 17 Aug Z¢ © Lall Ll
1566062409855

01815561178

"=y,

Chicken Mashroom
Soup
Quantity: 1

¥

Price: 200.0 .

zZ=—= Chicken Grilled M spice Jar - now
' Sandwich 1566062409855
Quantity: 1
Price: 200.0 Order COOKING

Total Price: 200.0
. Spice Jar - now

Subtotal __ 500.0 1566062409855
Vat+SD ____ o _____ 110.0 Order ACCEPTED
Total 610.0

Figure 26: Restaurant confirm about starting of cooking

26

6. When food is ready for the delivary, Restaurant notified user that food is prepare for the delivary.

<« Order Details

SAMIHA TAHSIN
1566062409855
01915561178

x Chicken Mashroom
— " Soup

Vat + SD

Quantity: 1
Price: 300.0
Total Price: 300.0

=" Chicken Grilled
~+ Sandwich
Quantity: 1

Price: 200.0
Total Price: 200.0

Sat, 17 Aug

- Spice Jar - now
1566062409855
Order WAITING FOR DELIVERY

I spice Jar - now
1566062409855
Order COOKING

Il spice Jar - now
1566062409855
Order ACCEPTED

Figure 27: Food Delivary prepare notification

7. Finally when food is delivered by Restaurant, user lastly got the final notification that her food is

delivered.

= Order Details

SAMIHA TAHSIN
1566062409855

01915561178

i

Subtotal

Chicken Mashroom
Soup

Quantity: 1

Price: 300.0

Total Price: 300.0

Chicken Grilled
Sandwich
Quantity: 1

Price: 200.0

Total Price: 200.0

i

Sat, 17 Aug

- Spice Jar v
1566062409855 Order DELIVERED

1566062409855 Order WAITING FOR DELIVERY
1566062409855 Order COOKING
1566062409855 Order ACCEPTED

Figure 28: Food is delivered

27

7.2 Evaluation

Our venture has brought about into in operation illustration which can perform simple action with
posting to the server and recovering information. This occasion is completely working and brings the
structure which can be utilized in any advancement of application.

7.2.1 Evaluation of the Outcome

Due to the tight plan we have a inclination to fizzled to have sufficient time to create application that
would contain full highlights which were expressed within the objectives chapter but the model of
the application is speaking tothe scope of the venture and have property that were sketched
out inside the scope.

7.2.2Evolution of Origin

The machine stage that's chosen for the applying has endless data and instructional exercises which
may encourage us though creating the application. This web supply is amazingly enlightening and
guides a way to construct application from scratch. Same supplyhttp://developer.android.com/sdk
will facilitate U.S. to form the vital environment.

7.2.3 Procedure Evaluation

The method of this venture are made open as expedient advancement with getting genuine result.
As old venture would final for 6 month this extend was wrapped up one and for one month. The
completion of this work was as a result of perseverance of extend specialist and understudy.

This framework was partitioned into stages and was taken after by simply the once per week news
and afterward twofold each week scope. Apparatuses that were utilized all through this venture were
no heritable liberated from charge.

28

Chapter 8

Future & Conclusion
8.1 Future of the System

In our system we have kept the paying or billing system manually. It means after order their food
from menu, they have to paying the bill by going to the booth. After paying the bill, chief will
confirm their order by sending a notification message in their mobile. But in future we want to
upgrade our application by keep a payment option directly to our app. We want to include the bkash,
rocket, Nogod, visa card or any kind of American express card system in our Paying option so that it
will be more convenient for both user and restaurant.

As all these paying systems are related to banking sector, so we have to elaborate our technical
knowledge more to deal with these stuffs. And for now, the user gets the menu by scanning the qr
code which is restaurant’s own property but we have a plan to make it in network base like when
user will entry to any restaurant and when they will be connected to the restaurant’sWi-Fi system,
they will automatically get the restaurant menu. | hope in future we can truly elaborate our plans
successfully.

There are some other features we are planning to include in our app in future. Such as:

8.1.1 Advance Reservations

Separated from nourishment requesting apps, there are numerous progress booking and

table saving apps like Open Table and No hold up that edit the sum of a few time that clients have to
be be compelled to require a position to eat. Be that as it may, these apps have the same point, but
they have through and through completely diverse approaches. If we will incorporate this
reservation office it'll be useful for us because it can pulled in client flow.

8.1.2 Ratings & Reviews

Eateries can get ready completely diverse exercises to boost customer benefit per their surveys.So
we want to add the rating system for customer by which they can inform us about our service and
rating system will also help others to judge us.

8.1.3 Discount & Deals for Customers
We want to deal our app with discount deals which will make it easier for users to go out and have

delicious food at the most affordable rates. So we will try to work our app with different restaurants
to bring in new successive business by dealing with discount materials.

29

8.2 Conclusion

Our target for this venture was to create an android application for client benefit whereas not serves
in eateries and in our venture. We have a propensity to achieve this mpoint. This application offers
client the adaptivity to observe accounts, orders and perform exercises related with it.We have tried
to make our app user friendly. And alsotried to test the application against the server provided by a
developer, who develops web application servers.This application, was implemented on laptop
devices, so the text size and design were adjustable to devices with bigger screens.On small devices,
it would cause problems to control the applications. Developing our application gave us a lot of
experience we learned new methods of how to implement application features, how to find the best
solutions and improve our problemsolving.Writing this projec twas part of ubject Project Control; so
many learned topics were used in this project and gave us the opportunity to understand thembetter.

We would like to thank our supervisor as he spends his time helping us with every delicate part
of our project and keep advising us during that time. We are really grateful to him that we have
learned a lot of matters from this,He guide us how to deal with the circumstances that we may
face in future while doing this type of project. It will be also helpful in our future ITcareer.

30

References

1. https://www.upwork.com/hiring/mobile/how-mobile-apps-have-transformed-restaurant-and-
food-delivery-industry/

2. https://pdfs.semanticscholar.org/41f7/a38be6b154eb62d74bd0d0f308ca5e48b50e.pdf

3. https://soltech.net/software-development-technologies/android-system-development/

4. https://pdfs.semanticscholar.org/e0f8/610c765968217alca396cchce655fc78dd82.pdf

5. https://syndicode.com/2017/10/05/top-6-software-development-methodologies/

6. https://dspace.cvut.cz/bitstream/handle/10467/62692/F3-BP-2016-Hogenauer-Tomas-
Android%20Kklient%20restauracnino%20systemu.pdf?sequence=1

7. https://blog.codemagic.io/what-is-flutter-benefits-and-limitations/

31

https://www.upwork.com/hiring/mobile/how-mobile-apps-have-transformed-restaurant-and-food-delivery-industry/
https://www.upwork.com/hiring/mobile/how-mobile-apps-have-transformed-restaurant-and-food-delivery-industry/
https://pdfs.semanticscholar.org/41f7/a38be6b154eb62d74bd0d0f308ca5e48b50e.pdf
https://soltech.net/software-development-technologies/android-system-development/
https://pdfs.semanticscholar.org/e0f8/610c765968217a1ca396ccbce655fc78dd82.pdf
https://syndicode.com/2017/10/05/top-6-software-development-methodologies/
https://dspace.cvut.cz/bitstream/handle/10467/62692/F3-BP-2016-Hogenauer-Tomas-Android%20klient%20restauracniho%20systemu.pdf?sequence=1
https://dspace.cvut.cz/bitstream/handle/10467/62692/F3-BP-2016-Hogenauer-Tomas-Android%20klient%20restauracniho%20systemu.pdf?sequence=1
https://blog.codemagic.io/what-is-flutter-benefits-and-limitations/

Appendix (Code)

For splash page:
package com.example.restaurant.ui

import android.os.Bundle

import com.example.restaurant.R

import com.example.restaurant.base.BaseActivity

import com.example.restaurant.data.pref.AppPreference

import com.example.restaurant.ui.clientdashboard.ClientDashBoardActivity

import com.example.restaurant.ui.getstarted.GetStarted Activity

import com.example.restaurant.ui.restaurantdashboard.RestaurantDashboardActivity

class SplashActivity : BaseActivity() {

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
val preference = AppPreference()

if(preference.id.isNotEmpty()) {
if(preference.userType == "'client™) {
startActivityAndFinishCurrent(ClientDashBoardActivity::class.java)
} else if(preference.userType == getString(R.string.user_type_restaurant)){
startActivityAndFinishCurrent(RestaurantDashboardActivity::class.java)

¥
}else {
startActivityAndFinishCurrent(GetStartedActivity::class.java)

¥

¥
k

Store data through network in firebase (For User Order details):
Order Network source:
addOnSuccessListener {
callback.onSuccess(Unit)
}.addOnFailureListener {
callback.onError(it)
}
}
fun placeOrder(order: Order, callback: OrderNetworkSourceCallback<Unit>) {
firestore.collection(**orders').document(order.id.toString())
.set(order)

.addOnSuccessL.istener {
callback.onSuccess(Unit)

32

}.addOnFailureListener{
callback.onError(it)

}

}
fun getOrders(userType: String, uid: String, callback:

OrderNetworkSourceCallback<QuerySnapshot>) {
firestore.collection(userType).document(uid).collection(**orders’").orderBy(*"id"",
Query.Direction.DESCENDING)
.get().addOnSuccessListener {
callback.onSuccess(it)
}.addOnFailureListener {
callback.onError(it)

}

}
fun updateOrderStatus(userType: String, uid: String, order: Order, callback:

OrderNetworkSourceCallback<Unit>) {
firestore.collection(userType).document(uid).collection(**orders').document(order.id.toString())
.update(*'status', order.status)package
com.example.restaurant.data.networksource.order
import com.example.restaurant.model.Order
import com.google.firebase.firestore.*

class OrderNetworkSource {
private val firestore: FirebaseFirestore = FirebaseFirestore.getinstance()

fun placeUsersOrder(userType: String, uid: String, order: Order, callback:
OrderNetworkSourceCallback<Unit>) {
firestore.collection(userType).document(uid).collection(**orders™).document(order.id.toString()

)

.set(order)

.addOnSuccessL.istener {
callback.onSuccess(Unit)
}.addOnFailureListener {
callback.onError(it)

}
}
}

Order Network source Callback:
packagecom.example.restaurant.data.networksource.order

import java.lang.Exception

interface OrderNetworkSourceCallback<T>{
fun onSuccess(result: T)

fun onError(exception: Exception)

33

¥

For Restaurant Details store in firebase:

Restaurant Network source:
packagecom.example.restaurant.data.networksource.restaurant

importandroid.net.Uri

import com.example.restaurant.model.Foodltem
import com.example.restaurant.utils. MENU

import com.example.restaurant.utils. RESTAURANT
import com.google.firebase.firestore.FirebaseFirestore
import com.google.firebase.firestore.QuerySnapshot
import com.google.firebase.storage.FirebaseStorage
import com.google.firebase.storage.UploadTask

class RestaurantNetworkSource {

private val firestore: FirebaseFirestore = FirebaseFirestore.getinstance()
private val storage: FirebaseStorage = FirebaseStorage.getinstance()

fun getRestaurantList(callback: RestaurantNetworkCallback<QuerySnapshot>) {

val collection = firestore.collection(RESTAURANT)
collection.get().addOnSuccessListener {

callback.onSuccess(it)

}.addOnFailureListener {

callback.onError(it)

}
¥

fun getMenu(restaurantld: String, callback: RestaurantNetworkCallback<QuerySnapshot>) {

val collection = firestore.collection(RESTAURANT).document(restaurantld).collection(MENU)
collection.get().addOnSuccessL.istener {

callback.onSuccess(it)

}.addOnFailureListener {

callback.onError(it)

}
k

fun setMenultem(restaurantld: String, menultem: Foodltem, callback:
RestaurantNetworkCallback<Unit>) {
val document =
firestore.collection(RESTAURANT).document(restaurantld).collection(MENU).document(menul
tem.id.toString())

document.set(menultem).addOnSuccessListener {
callback.onSuccess(Unit)
}.addOnFailureListener {
callback.onError(it)

34

}
k

fun uploadFoodltemImage(uri: Uri, restaurantld: String, foodld: Long, callback:

RestaurantNetworkCallback<UploadTask. TaskSnapshot>) {

val path = storage.reference.child(**$restaurantld/$foodld.jpg"*)
path.putFile(uri).addOnSuccessListener {

callback.onSuccess(it)

}.addOnFailureListener {

callback.onError(it)

}
¥
k

Restaurant Network source Callback:
packagecom.example.restaurant.data.networksource.restaurant

importjava.lang.Exception
interface RestaurantNetworkCallback<T>{

fun onSuccess(result: T)
fun onError(exception: Exception)

}

Registration page for both User & Restaurant:
Registration activity:
package com.example.restaurant.ui.registration

import android.content.Intent

import android.os.Bundle

import androidx.lifecycle.Observer

import com.example.restaurant.R

import com.example.restaurant.base.BaseActivity

import com.example.restaurant.ui.clientdashboard.ClientDashBoardActivity
import com.theartofdev.edmodo.cropper.Croplmage

import com.theartofdev.edmodo.cropper.CroplmageView

import kotlinx.android.synthetic.main.activity_registration.*

import org.jetbrains.anko.sdk27.coroutines.onClick

import org.jetbrains.anko.toast

import android.R.attr.data

import android.app.Activity

import android.net.Uri

import com.bumptech.glide.Glide

import com.example.restaurant.ui.restaurantdashboard.RestaurantDashboardActivity

class RegistrationActivity : BaseActivity() {

companion object {

const val USER_TYPE = "user_type"

}

private lateinit var userType: String

private val presenter = RegistrationPresenter()
private var uri : Uri? = null

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity _registration)

setActionBar(toolbar, true)

userType = intent.getStringExtra(USER_TYPE) ?: """

initListener()
initClickListener()

}

override fun onActivityResult(requestCode: Int, resultCode: Int, data: Intent?) {
if(requestCode == Croplmage.CROP_IMAGE_ACTIVITY_REQUEST_CODE) {
try {
val result = Croplmage.getActivityResult(data)
uri = result.uri
if (uri!'=null) {

Glide.with(this@RegistrationActivity).load(uri).into(ivProfile)

}catch (e: Exception) {
e.printStackTrace()
}
}

else super.onActivityResult(requestCode, resultCode, data)

by

private fun initClickListener() {
ivProfile.onClick {
Croplmage.activity()
.setGuidelines(CroplmageView.Guidelines.ON)
Start(this@RegistrationActivity)

}

btnRegister.setOnClickListener {
presenter.registration(
uri,

36

etEmail.text.toString(),
etPassword.text.toString(),
etMobile.text.toString(),
etAddress.text.toString(),
etName.text.toString(), userType)

}
k

private fun initListener() {
presenter.emailError.observe(this, Observer {
tilEmail.error = it
)
presenter.addressError.observe(this, Observer {
tilAddress.error = it
)
presenter.nameError.observe(this, Observer {
tilName.error = it
)
presenter.passwordError.observe(this, Observer {
tilPassword.error = it
)
presenter.phoneNoError.observe(this, Observer {
tilMobile.error = it
)
presenter.message.observe(this, Observer {
toast(it)
)
presenter.loaderLiveData.observe(this, Observer {
if(it) showLoader()
else hideLoader()
)
presenter.userLiveData.observe(this, Observer {
if(userType == ""client™) {
startActivityAndFinishCurrent(ClientDashBoardActivity::class.java)
}else {
startActivityAndFinishCurrent(RestaurantDashboardActivity::class.java)
}
)
}
}

Registration Presenter:
package com.example.restaurant.ui.registration

import android.net.Uri
import androidx.lifecycle.MutableLiveData

37

import com.example.restaurant.base.BasePresenter

import com.example.restaurant.data.repository.auth. AuthRepository

import com.example.restaurant.data.repository.auth. AuthRepositoryCallback
import com.example.restaurant.data.repository.auth. AuthRepositorylmpl
import com.example.restaurant.model.User

import com.example.restaurant.utils.isEmailValid

import com.example.restaurant.utils.isPhoneNoValid

import com.orhanobut.logger.Logger

import java.lang.Exception

class RegistrationPresenter : BasePresenter() {

private val repository: AuthRepository =
AuthRepositorylmpl()

val emailError = MutableLiveData<String>()

val nameError = MutableLiveData<String>()

val phoneNoError = MutableLiveData<String>()
val addressError = MutableLiveData<String>()
val passwordError = MutableLiveData<String>()
val userLiveData = MutableLiveData<User>()

fun registration(photoUri: Uri?, email: String, password: String, phoneNo: String, address:
String, name: String, userType: String) {

val user = User(name, email, address, phoneNo, userType = userType)
if(validate(user, password, photoUri)) {
loaderLiveData.value = true

repository.registration(

photoUri!!,

userType,

user,

email,

password,

object : AuthRepositoryCallback<User> {

override fun onSuccess(result: User) {

Logger.d(result)
userLiveData.value = result
loaderLiveData.value = false
message.value = "Registration successful”

¥

override fun onError(exception: Exception) {
exception.printStackTrace()
message.value = exception.localizedMessage
loaderLiveData.value = false

¥

38

)
k
k

private fun validate(user: User, password: String, photoUri: Uri?): Boolean {
var isValid = true

emailError.value = null

nameError.value = null

addressError.value = null

phoneNoError.value = null

passwordError.value = null
if('user.email.isEmailValid()) {
isValid = false

emailError.value = "Enter a valid email"

if(user.name.length <= 2) {
isValid = false
nameError.value = "Enter a valid name"
}
if(user.address.length <=5) {
isValid = false
addressError.value = "Enter a valid address"
}
if(user.phoneNo.length 1= 11 && !user.phoneNo.isPhoneNoValid()) {
isValid = false
phoneNoError.value = "Enter a valid phone number"

}
if(password.length <=5) {
isValid = false
passwordError.value = "Enter a valid password"
}
if(photoUri == null) {
isValid = false
message.value = "Select a profile picture”
}
return isValid
}
}

Login page for both User & Restaurant:

Login activity:
package com.example.restaurant.ui.login

import android.content.Intent
import android.os.Bundle

39

import android.text.SpannableString

import android.text.Spanned

import android.text.method.LinkMovementMethod

import android.text.style.ClickableSpan

import android.text.style.ForegroundColorSpan

import android.view.Menultem

import android.view.View

import androidx.core.content.ContextCompat

import androidx.lifecycle.Observer

import com.example.restaurant.R

import com.example.restaurant.base.BaseActivity

import com.example.restaurant.ui.clientdashboard.ClientDashBoardActivity
import com.example.restaurant.ui.registration.RegistrationActivity

import com.example.restaurant.ui.restaurantdashboard.RestaurantDashboardActivity
import kotlinx.android.synthetic.main.activity_login.*

import org.jetbrains.anko.sdk27.coroutines.onClick

import org.jetbrains.anko.toast

class LoginActivity : BaseActivity() {

companion object {

const val USER_TYPE = ""user_type"
}

lateinit var userType: String

private val presenter = LoginPresenter()

override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)
setContentView(R.layout.activity_login)
setActionBar(toolbar, true)

userType = intent.getStringExtra(USER_TYPE) ?2: """

val string = SpannableString(getString(R.string.new_user_create_an_account))
val clickSpan = object: ClickableSpan() {
override fun onClick(p0: View) {
val intent = Intent(applicationContext, RegistrationActivity::class.java)
intent.putExtra(RegistrationActivity. USER_TYPE, userType)
startActivity(intent)

¥
k

val colorSpan = ForegroundColorSpan(ContextCompat.getColor(applicationContext,
R.color.red))

string.setSpan(clickSpan, string.indexOf(**Create™), string.length,
Spanned.SPAN_EXCLUSIVE_EXCLUSIVE)

40

string.setSpan(colorSpan, string.indexOf(*'Create'"), string.length,
Spanned.SPAN_EXCLUSIVE_EXCLUSIVE)

tvRegister.text = string

tvRegister.movementMethod = LinkMovementMethod.getInstance()

btnLogin.onClick {
presenter.login(userType, etEmail.text.toString(), etPassword.text.toString())

}

presenter.messagelLiveData.observe(this, Observer {
toast(it)
)

presenter.emailError.observe(this, Observer {
tilEmail.error = it

)
presenter.passwordError.observe(this, Observer {
tilPassword.error = it

by

presenter.userLiveData.observe(this, Observer {
if(userType == ""client™) {
startActivityAndFinishCurrent(ClientDashBoardActivity::class.java)
} else if(userType == getString(R.string.user_type_restaurant)) {
startActivityAndFinishCurrent(RestaurantDashboardActivity::class.java)

}

)

presenter.loaderLiveData.observe(this, Observer {
if(it) showLoader()

else hideLoader()

)

}
Login Presenter:
package com.example.restaurant.ui.login

import androidx.lifecycle.MutableLiveData

import com.example.restaurant.base.BasePresenter

import com.example.restaurant.data.repository.auth. AuthRepository

import com.example.restaurant.data.repository.auth. AuthRepositoryCallback
import com.example.restaurant.data.repository.auth. AuthRepositorylmpl
import com.example.restaurant.model.User

import com.example.restaurant.utils.isEmailValid

import com.orhanobut.logger.Logger

import java.lang.Exception

class LoginPresenter : BasePresenter() {

41

private val repository : AuthRepository =
AuthRepositorylmpl()

val userLiveData = MutableLiveData<User>()

val messageLiveData = MutableLiveData<String>()

val emailError = MutableLiveData<String?>()

val passwordError = MutableLiveData<String?>()

fun login(userType: String, email: String, password: String) {
if(validate(email, password)) {
loaderLiveData.value = true
repository.login(userType, email, password, object :
AuthRepositoryCallback<User> {

override fun onSuccess(result: User) {

Logger.d(*"Login success')
userLiveData.value = result
loaderLiveData.value = false

messageL iveData.value = "'Login successful*
}

override fun onError(exception: Exception) {
exception.printStackTrace()

messagelL iveData.value = exception.localizedMessage

loaderLiveData.value = false

}

by
k
¥

private fun validate(email: String, password: String): Boolean {
var isValid = true
emailError.value = null
passwordError.value = null
if(email.isEmailValid()) {
isValid = false
emailError.value = "Enter a valid email™
}
if(password.length <=5) {
isValid = false

passwordError.value = ""Password must have at least 6 characters™

¥

return isValid

k
¥

42

For User Interface Part:
Clint Dash Board Activity:
package com.example.restaurant.ui.clientdashboard

import android.os.Bundle

import com.google.android.material.floatingactionbutton.FloatingActionButton
import com.google.android.material.snackbar.Snackbar

import androidx.navigation.findNavController

import androidx.drawerlayout.widget.DrawerLayout

import com.google.android.material.navigation.NavigationView

import androidx.appcompat.app.AppCompatActivity

import androidx.appcompat.widget. Toolbar

import android.view.Menu

import android.view.Menultem

import androidx.core.view.GravityCompat

import androidx.navigation.ui.*

import com.bumptech.glide.Glide

import com.example.restaurant.R

import com.example.restaurant.base.BaseActivity

import com.example.restaurant.data.pref.AppPreference

import com.example.restaurant.ui.SplashActivity

import com.example.restaurant.ui.dialogs.LogoutDialog

import kotlinx.android.synthetic.main.nav_header_client_dash_board.view.*
import org.jetbrains.anko.support.v4.drawerListener

class ClientDashBoardActivity : BaseActivity() {

companion object {
const val MOVE_TO = "move_to"
}
private lateinit var appBarConfiguration: AppBarConfiguration
private val preference = AppPreference()
private lateinit var navMenultem : Menultem
private var gotoDestination = false
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity client_dash_board)
val toolbar: Toolbar = findViewByld(R.id.toolbar)
setActionBar(toolbar, false)
val moveTo = intent.getIntExtra(MOVE_TO, 0)
val drawerLayout: DrawerLayout = findViewByld(R.id.drawer_layout)
val navView: NavigationView = findViewByld(R.id.nav_view)
val navController = findNavController(R.id.nav_host_fragment)
I/ Passing each menu ID as a set of Ids because each
/I menu should be considered as top level destinations.
appBarConfiguration = AppBarConfiguration(

43

setOf(
R.id.nav_restaurants, R.id.nav_orders
), drawerLayout
)
setupActionBarWithNavController(navController, appBarConfiguration)
navView.setupWithNavController(navController)
I navController.navigate(R.id.nav_restaurants)
navMenultem = navView.menu.getltem(0)

val header = navView.getHeaderView(0)

header.tvUserName.text = preference.userSession.name
header.tvEmail.text = preference.userSession.email
Glide.with(this).load(preference.userSession.profilePhotoUrl).into(header.ivProfile)

navView.setNavigationltemSelectedListener { menultem ->

if (menultem.itemld == R.id.nav_logout) {
LogoutDialog(object: LogoutDialog.Callback{
override fun onLogoutClick() {
preference.logout()
startActivityAndFinishCurrent(SplashActivity::class.java)
}

}.show(supportFragmentManager, “logout™")
}else {
if (navMenultem.itemld != menultem.itemld) {
navMenultem = menultem
gotoDestination = true
}
}
drawerLayout.closeDrawer(GravityCompat.START, true)
return@setNavigationltemSelectedL.istener true
}
drawerLayout.drawerListener {
this.onDrawerClosed {
if (gotoDestination) {
navController.navigate(navMenultem.itemld)
gotoDestination = false
}
}

if(moveTo!=0) {
navController.navigate(navView.menu.getltem(0).itemld)

k
¥

override fun onSupportNavigateUp(): Boolean
val navController = findNavController(R.id.nav_host_fragment)
return navController.navigateUp(appBarConfiguration) || super.onSupportNavigateUp()

¥

44

¥

Clint Order Checkout Activity:
package com.example.restaurant.ui.checkout

import android.content.Intent

import android.os.Bundle

import androidx.lifecycle.Observer

import androidx.recyclerview.widget.LinearLayoutManager
import com.example.restaurant.R

import com.example.restaurant.base.BaseActivity

import com.example.restaurant.model.Foodltem

import com.example.restaurant.model.Order

import com.example.restaurant.ui.clientdashboard.ClientDashBoardActivity
import kotlinx.android.synthetic.main.activity_checkout.*
import kotlinx.android.synthetic.main.activity checkout.toolbar
import org.jetbrains.anko.sdk27.coroutines.onClick

import org.jetbrains.anko.toast

class CheckoutActivity : BaseActivity() {

companion object {
const val ORDER = "order""
const val ORDER_REQUEST_CODE =101

ks

private var order: Order = Order()

var subTotal = 0.0

var vat =0.0

private val presenter = CheckoutPresenter()
val datalntent: Intent = Intent()

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity checkout)
setActionBar(toolbar, true)
order = intent.getParcelableExtra(ORDER)
datalntent.putExtra(ORDER, order)
setResult(ORDER_REQUEST_CODE, datalntent)
rvCheckoutltems.layoutManager = LinearLayoutManager(this)
rvCheckoutltems.adapter = CheckoutltemAdapter(object: CheckoutltemAdapter.Callback{
override fun onltemChange(item: Foodltem, count: Long) {
when {
count == OL ->order.items.remove(item.id.toString())
order.items[item.id.toString()]!!.size> count -
>order.items[item.id.toString()]!!.removeAt(order.items[item.id.toString()]!!.size-1)

45

else ->order.items[item.id.toString()]!!.add(item)
}
datalntent.putExtra(ORDER, order)
setResult(ORDER_REQUEST_CODE, datalntent)
if(order.items.isEmpty()) {
finish()
}else {
(rvCheckoutltems.adapter as CheckoutltemAdapter).setOrder(order.items)
calculateSubTotal()

k
ki

}-apply {
setOrder(order.items)
}
btnPlaceOrder.onClick {
presenter.placeOrder(order)
}

presenter.loaderLiveData.observe(this, Observer {
if(it) showLoader()
else hideLoader()
)
presenter.message.observe(this, Observer {
toast(it)
)

presenter.orderPlaced.observe(this, Observer {
if(it) {
val intent = Intent(this@CheckoutActivity, ClientDashBoardActivity::class.java)
intent.putExtra(ClientDashBoardActivity. MOVE_TO, 1)
intent.addFlags(Intent. FLAG_ACTIVITY_CLEAR_TOP)
startActivity(intent)

¥
)

calculateSubTotal()

¥

fun calculateSubTotal() {
subTotal =0.0
order.items.forEach {
var multiplier = it.value.size
subTotal += it.value[0].price * multiplier

46

tvSubTotal.text = subTotal.toString()
order.subTotal = subTotal
calculateVat()

¥

fun calculateVat() {

vat = subTotal * .22
tvVat.text = vat.toString()
calculateTotal()

¥

fun calculateTotal() {
tvTotal.text = (subTotal + vat).toString()
order.total = subTotal + vat

k
k

Restaurant Menu Activity for User:
package com.example.restaurant.ui.restaurantmenu

import android.content.Intent

import android.os.Bundle

import android.view.View.GONE

import android.view.View.VISIBLE

import androidx.lifecycle.Observer

import androidx.recyclerview.widget.LinearLayoutManager
import com.example.restaurant.R

import com.example.restaurant.base.BaseActivity

import com.example.restaurant.data.pref. AppPreference
import com.example.restaurant.model.Foodltem

import com.example.restaurant.model.Order

import com.example.restaurant.model.User

import com.example.restaurant.ui.checkout.CheckoutActivity
import com.orhanobut.logger.Logger

import kotlinx.android.synthetic.main.activity _restaurant_menu.*
import org.jetbrains.anko.sdk27.coroutines.onClick

import org.jetbrains.anko.toast

import java.util.function.BiFunction

class RestaurantMenuActivity : BaseActivity() {
companion object {

const val RESTAURANT = ""restaurant™
const val id ="'ID""
}

47

private var cart = mutableMapOf<String, MutableList<Foodltem>>()

private val presenter = RestaurantMenuPresenter()
private val preference = AppPreference()
lateinit var restaurant: User

override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)
setContentView(R.layout.activity_restaurant_menu)
setActionBar(toolbar, true)

restaurant = intent.getParcelableExtra(RESTAURANT)
rvMenu.layoutManager = LinearLayoutManager(applicationContext)

rvMenu.adapter = RestaurantMenuAdapter(object: RestaurantMenuAdapter.Callback{

override fun onAddToCart(item: Foodltem, count: Long) {

if(cart[item.id.toString()] '= null) {
when {

count == OL ->cart.remove(item.id.toString())
cart[item.id.toString()]!!.size> count -
>cart[item.id.toString()]!!.removeAt(cart[item.id.toString()]!!.size-1)
else ->cart[item.id.toString()]!!.add(item)

}
}else {
cart[item.id.toString()] = mutableListOf(item)
}
Logger.d(cart)
refreshCart()

¥
by

btnCheckout.onClick {
val order = Order(items = cart, client = preference.userSession, restaurant =
restaurant)
val intent = Intent(applicationContext, CheckoutActivity::class.java)
intent.putExtra(CheckoutActivity. ORDER, order)
startActivityForResult(intent, CheckoutActivity ORDER_REQUEST_CODE)

presenter.menu.observe(this, Observer {
(rvMenu.adapter as RestaurantMenuAdapter).addltems(it)
)
presenter.loaderLiveData.observe(this, Observer {
if(it) showLoader()
else hideLoader()

)

48

presenter.message.observe(this, Observer {
toast(it)
)

presenter.getMenu(restaurant.id)

override fun onActivityResult(requestCode: Int, resultCode: Int, data: Intent?) {
super.onActivityResult(requestCode, resultCode, data)
if(requestCode == CheckoutActivity. ORDER_REQUEST_CODE) {
data?.let {

val order: Order = data.getParcelableExtra(CheckoutActivity. ORDER)
cart = order.items
(rvMenu.adapter as RestaurantMenuAdapter).addOrderltems(cart)

refreshCart()
}

¥
k

private fun refreshCart() {
if(cart.isNotEmpty()) {
btnCheckout.visibility = VISIBLE
if(cart.size==1) {
btnCheckout.text = ""${cart.size} item"
}else {

¥

btnCheckout.text = ""${cart.size} items"

(rvMenu.adapter as RestaurantMenuAdapter).addOrderltems(cart)

}else {
btnCheckout.visibility = GONE

For Restaurant Interface:

Add Menu Item Activity:
package com.example.restaurant.ui.addmenuitem

import android.content.Intent
import android.net.Uri

import android.os.Bundle

import android.view.LayoutInflater
import android.view.View

import android.view.ViewGroup

49

import androidx.lifecycle.Observer

import com.bumptech.glide.Glide

import com.example.restaurant.R

import com.example.restaurant.base.BaseActivity

import com.theartofdev.edmodo.cropper.Croplmage

import com.theartofdev.edmodo.cropper.CroplmageView
import kotlinx.android.synthetic.main.activity_add_menu_item.*
import org.jetbrains.anko.sdk27.coroutines.onClick

import org.jetbrains.anko.toast

class AddMenultemActivity : BaseActivity() {

private val presenter = AddMenultemPresenter()
var uri : Uri? = null

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity_add_menu_item)
setActionBar(toolbar, true)
ivFoodltem.onClick {
Croplmage.activity()
.setGuidelines(CroplmageView.Guidelines.ON)
Start(this@ AddMenultemActivity)

}

btnAddItem.onClick {
presenter.setMenultem(etFoodName.text.toString(), etFoodPrice.text.toString(),
etFoodDescription.text.toString(), uri)

presenter.menuAdded.observe(this, Observer {
if(it) finish()
)
presenter.loaderLiveData.observe(this, Observer {
if(it) showLoader()
else hideLoader()
)
presenter.message.observe(this, Observer {
toast(it)
)
presenter.descriptionError.observe(this, Observer {
tilFoodDescription.error = it
)
presenter.nameError.observe(this, Observer {
tilFoodName.error = it

)

presenter.priceError.observe(this, Observer {

tilFoodPrice.error = it

by
k

override fun onActivityResult(requestCode: Int, resultCode: Int, data: Intent?) {
if(requestCode == Croplmage.CROP_IMAGE_ACTIVITY_REQUEST_CODE) {

try {
val result = Croplmage.getActivityResult(data)

uri = result.uri
if (uri!'=null) {
Glide.with(this@AddMenultemActivity).load(uri).into(ivFoodltem)
}

}catch (e: Exception) {
e.printStackTrace()
}
}
else super.onActivityResult(requestCode, resultCode, data)
}
}

Edit Menu Item Activity:
package com.example.restaurant.ui.editmenu

import android.content.Intent

import android.net.Uri

import android.os.Bundle

import android.view.LayoutInflater

import android.view.View

import android.view.ViewGroup

import androidx.lifecycle.Observer

import com.bumptech.glide.Glide

import com.example.restaurant.R

import com.example.restaurant.base.BaseActivity

import com.example.restaurant.model.Foodltem

import com.theartofdev.edmodo.cropper.Croplmage
import com.theartofdev.edmodo.cropper.CroplmageView
import kotlinx.android.synthetic.main.activity edit_menu_item.*
import org.jetbrains.anko.sdk27.coroutines.onClick
import org.jetbrains.anko.toast

class EditMenultemActivity : BaseActivity() {

companion object {
const val FOOD = ""food"

¥

51

private val presenter = EditMenultemPresenter()
var uri : Uri? = null

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity _edit_menu_item)
setActionBar(toolbar, true)
ivFoodItem.onClick {
Croplmage.activity()
.setGuidelines(CroplmageView.Guidelines.ON)
Start(this@EditMenultemActivity)

val food = intent.getParcelableExtra<Foodltem>(FOOD)

Glide.with(this).load(food.photoUrl).placeholder(R.drawable.ic_add_white_with_padding).into
(ivFoodltem)

etFoodName.setText(food.name)

etFoodPrice.setText(food.price.toString())

etFoodDescription.setText(food.description)

btnEditltem.onClick {
presenter.editMenultem(food.photoUrl, etFoodName.text.toString(),
etFoodPrice.text.toString(),
etFoodDescription.text.toString(), uri, food.id)
}

presenter.menuAdded.observe(this, Observer {
if(it) finish()
)
presenter.loaderLiveData.observe(this, Observer {
if(it) showLoader()
else hideLoader()
)
presenter.message.observe(this, Observer {
toast(it)
)
presenter.descriptionError.observe(this, Observer {
tilFoodDescription.error = it
b
presenter.nameError.observe(this, Observer {
tilFoodName.error = it
)
presenter.priceError.observe(this, Observer {
tilFoodPrice.error = it

)

52

¥

override fun onActivityResult(requestCode: Int, resultCode: Int, data: Intent?) {

if(requestCode == Croplmage.CROP_IMAGE_ACTIVITY_REQUEST_CODE) {

try {

val result = Croplmage.getActivityResult(data)

uri = result.uri

if (uri!'=null) {
Glide.with(this@EditMenultemActivity).load(uri).into(ivFoodltem)

}catch (e: Exception) {
e.printStackTrace()
}
}
else super.onActivityResult(requestCode, resultCode, data)
}
}

Restaurant “My menu” Fragment:
package com.example.restaurant.ui.mymenu

import android.content.Intent

import android.os.Bundle

import android.view.LayoutInflater

import android.view.View

import android.view.ViewGroup

import androidx.lifecycle.Observer

import androidx.recyclerview.widget.GridLayoutManager

import com.example.restaurant.R

import com.example.restaurant.base.BaseFragment

import com.example.restaurant.model.Foodltem

import com.example.restaurant.ui.addmenuitem.AddMenultemActivity
import com.example.restaurant.ui.editmenu.EditMenultemActivity
import kotlinx.android.synthetic.main.fragment_my_menu.*
import org.jetbrains.anko.sdk27.coroutines.onClick

import org.jetbrains.anko.support.v4.toast

class MyMenuFragment : BaseFragment() {
private val presenter = MyMenuPresenter()

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)

presenter.loaderLiveData.observe(this, Observer {

if(it) showLoader()
else hideLoader()
)
presenter.message.observe(this, Observer {
toast(it)
)
}

override fun onCreateView(
inflater: LayoutInflater,
container: ViewGroup?,
savedInstanceState: Bundle?
): View? {
returninflater.inflate(R.layout.fragment_my_menu, container, false)

ks

override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
super.onViewCreated(view, savedInstanceState)

rvMenu.layoutManager = GridLayoutManager(context, 2)
rvMenu.adapter = MenuAdapter(object: MenuAdapter.Callback{
override fun onEditButtonClick(food: Foodltem) {
val intent = Intent(context, EditMenultemActivity::class.java)
intent.putExtra(EditMenultemActivity. FOOD, food)
startActivity(intent)

}

1)
btnAddltem.onClick {

val intent = Intent(context, AddMenultemActivity::class.java)
startActivity(intent)

presenter.menu.observe(this, Observer {
(rvMenu.adapter as MenuAdapter).addItems(it)

by
¥

override fun onResume() {
super.onResume()
presenter.getMyMenu()

k
¥

54

Restaurant Order Details Activity:
package com.example.restaurant.ui.orderdetails

import android.os.Bundle

import android.os.PersistableBundle

import android.view.View.INVISIBLE

import androidx.lifecycle.Observer

import androidx.recyclerview.widget.LinearLayoutManager
import com.example.restaurant.R

import com.example.restaurant.base.BaseActivity

import com.example.restaurant.model.Order

import com.example.restaurant.utils. ACTION_STATUS
import kotlinx.android.synthetic.main.activity _restaurant_order_details.*
import org.jetbrains.anko.sdk27.coroutines.onClick

class RestaurantOrderDetails : BaseActivity() {

companion object {
const val ORDER = "order"

ks

var order: Order? = null
private val presenter = RestaurantOrderDetailsPresenter()

override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)
setContentView(R.layout.activity restaurant_order_details)
setActionBar(toolbar, true)

order = intent.getParcelableExtra(ORDER)
rvitems.layoutManager = LinearLayoutManager(this)

order?.let { order ->
tvName.text = order.client.name
tvPhoneNo.text = order.client.phoneNo
tvOrderld.text = order.id.toString()
rvltems.adapter = RestaurantOrderltemsAdapter(order.items)
tvSubTotal.text = order.subTotal.toString()
tvVat.text = (order.total - order.subTotal).toString()
tvTotal.text = order.total.toString()
if (order.status <ACTION_STATUS.size - 2) {
btnOrderNextStatus.text = ACTION_STATUS[order.status + 1]
}else {
btnOrderNextStatus.visibility = INVISIBLE
btnOrderCancel.visibility = INVISIBLE

55

o

presenter.loaderLiveData.observe(this, Observer {
if(it) showLoader()
else hideLoader()

)

presenter.updatedOrder.observe(this, Observer {
order =it
if(it.status <ACTION_STATUS.size-2) {
btnOrderNextStatus.text = ACTION_STATUSJit.status + 1]
}else {
btnOrderNextStatus.visibility = INVISIBLE
btnOrderCancel.visibility = INVISIBLE

}
)
btnOrderCancel.onClick {
order?.let{
presenter.updateOrderStatus(it, 5)
}
}
btnOrderNextStatus.onClick {
order?.let {
presenter.updateOrderStatus(it, it.status + 1)
}
}
}
}

QR Code:(QR Code Generate Fragment):
package com.example.restaurant.ui.qrcode

import android.os.Bundle

import android.view.LayoutInflater

import android.view.View

import android.view.ViewGroup

import androidmads.library.grgenearator. QRGContents
import androidmads.library.qrgenearator. QRGEncoder
import com.example.restaurant.R

import com.example.restaurant.base.BaseActivity

56

import com.example.restaurant.base.BaseFragment
import com.example.restaurant.data.pref. AppPreference
import kotlinx.android.synthetic.main.activity_qr_code.*
import org.jetbrains.anko.imageBitmap

import org.jetbrains.anko.support.v4.dimen

import java.lang.Exception

class GenerateQrCodeFragment : BaseFragment() {

private val session = AppPreference()

override fun onCreateView(
inflater: LayoutInflater,
container: ViewGroup?,
savedInstanceState: Bundle?
): View? {
returninflater.inflate(R.layout.activity gr_code, container, false)

ks

override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
super.onViewCreated(view, savedInstanceState)

val grgencoder = QRGENcoder(session.id, null, QRGContents. Type. TEXT,
dimen(R.dimen._200sdp))
try{
val bitmap = qrgEncoder.encodeAsBitmap()
ivQrCode.imageBitmap = bitmap
} catch (e: Exception) {
e.printStackTrace()
}
}
}

QR Code : (Scan Activity):
package com.example.restaurant.ui.qrcode

import android.Manifest

import android.os.Build

import android.os.Bundle

import com.example.restaurant.R

import com.example.restaurant.base.BaseActivity
import com.google.zxing.BarcodeFormat

import com.google.zxing.Result

import kotlinx.android.synthetic.main.activity _scan.*

import me.dm7.barcodescanner.zxing.ZXingScannerView
import org.jetbrains.anko.toast

import com.karumi.dexter.PermissionToken

import com.karumi.dexter.listener.PermissionDeniedResponse
import com.karumi.dexter.listener.PermissionGrantedResponse
import com.karumi.dexter.listener.single.PermissionListener
import android.Manifest.permission

import android.app.Activity

import android.content.Intent

import com.karumi.dexter.Dexter

import com.karumi.dexter.listener.PermissionRequest

class ScanActivity: BaseActivity(), ZXingScannerView.ResultHandler {

override fun handleResult(p0: Result?) {

if(p0 '=null) {

val intent = Intent()
intent.putExtra(*"1D"", p0.text)
setResult(Activity. RESULT_OK, intent)
finish()

}
}

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity scan)

by

override fun onResume() {
super.onResume()

Dexter.withActivity(this)
.withPermission(Manifest.permission. CAMERA)
.withListener(object : PermissionListener {
override fun onPermissionGranted(response: PermissionGrantedResponse) {/* ... */
grCodeScanner.startCamera()
grCodeScanner.setResultHandler(this@ScanActivity)
}

override fun onPermissionDenied(response: PermissionDeniedResponse) {/* ... */
toast(**Can not access camera')
finish()
}

override fun onPermissionRationaleShouldBeShown(
permission: PermissionRequest,
token: PermissionToken

)

token.continuePermissionRequest()

}
}.check()

¥

private fun setScannerProperties() {
grCodeScanner.setFormats(listOf(BarcodeFormat.QR_CODE))
grCodeScanner.setAutoFocus(true)
grCodeScanner.setLaserColor(R.color.colorAccent)
grCodeScanner.setMaskColor(R.color.colorAccent)

k
¥

Dialogs (Two Types used) :

Loader:
packagecom.example.restaurant.ui.dialogs

import android.graphics.Color

import android.graphics.drawable.ColorDrawable
import android.os.Bundle

import android.view.LayoutInflater

import android.view.View

import android.view.ViewGroup

import androidx.fragment.app.DialogFragment
import com.example.restaurant.R

class Loader : DialogFragment() {

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)

setStyle(DialogFragment.STYLE_NO_FRAME, R.style.MyAlertDialogTheme)
isCancelable = false

¥

override fun onCreateView(
inflater: Layoutinflater,
container: ViewGroup?,
savedInstanceState: Bundle?
): View? {
returninflater.inflate(R.layout.dialog_loader, container, false)

59

¥

override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
super.onViewCreated(view, savedInstanceState)

dialog?.window?.setBackgroundDrawable(ColorDrawable(Color.parseColor(**#00000000")))
}
}

Log Out Dialog:
package com.example.restaurant.ui.dialogs

import android.os.Bundle

import android.view.LayoutInflater

import android.view.View

import android.view.ViewGroup

import androidx.fragment.app.DialogFragment
import com.example.restaurant.R

import kotlinx.android.synthetic.main.dialog_logout.*
import org.jetbrains.anko.sdk27.coroutines.onClick

class LogoutDialog(val callback: Callback) : DialogFragment() {

override fun onCreateView(
inflater: Layoutinflater,
container: ViewGroup?,
savedInstanceState: Bundle?
): View? {
returninflater.inflate(R.layout.dialog_logout, container, false)

by

override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
super.onViewCreated(view, savedInstanceState)

btnCancel.onClick {
dismiss()
}
btnLogout.onClick {
callback.onLogoutClick()
dismiss()
}
}

interface Callback {
fun onLogoutClick()

¥
ks

60

