
Crop Disease Analysis Using Ontology

and SPARQL

Submitted by:

Rehnuma Shakil

ID: 2015-2-96-001

Dept. of Computer Science & Engineering

East West University

Dhaka.

Supervised by:

Dr. Mohammad Rezwanul Huq

Assistant Professor

Dept. of Computer Science & Engineering

East West Engineering

Dhaka.

This project has been submitted to the Dept. of Computer Science & Engineering,

East West University in the partial fulfillment of the requirement for the degree of

Masters of Science in Computer Science & Engineering.

East West University

Dept. of Computer Science & Engineering

Spring 2017

I

Declaration

This project has been submitted to the Dept. of Computer Science & Engineering, East West

University in accordance with the partial fulfilment of the requirement for the degree Masters of

Science in Computer Science & Engineering, performed by me, Rehnuma Shakil, ID: 2015-2-96-

001, under supervision of Dr. Mohammad Rezwanul Huq, Assistant Professor, Dept. of Computer

Science & Engineering, East West University. This project work has been completed under the

course work Master’s Project, CSE 597.

I, hereby declare that, this project has not been submitted elsewhere for the requirement of any

other degrees or diploma or any other purpose.

Signature of the candidate

Rehnuma Shakil

II

Letter of Acceptance

This project is entitled “Crop Disease Analysis Using Ontology and SPARQL” submitted by

Rehnuma Shakil, ID: 2015-2-96-001, to the Dept. of Computer Science & Engineering, East West

University, Dhaka-1212, Bangladesh is accepted by the department in order to the partial

fulfilment of requirement for the degree of Masters of Science in Computer Science &

Engineering, April 2017.

Board of Examiners:

Supervisor:

Dr. Mohammad Rezwanul Huq

Assistant Professor

Dept. of Computer Science & Engineering

East West University

Dhaka, Bangladesh.

Chairperson:

Dr. Ahmed Wasif Reza

Associate Professor & Chairperson (Acting)

Dept. of Computer Science & Engineering

East West University

Dhaka, Bangladesh.

III

Acknowledgement

I am using this opportunity to express my gratitude to everyone who supported me throughout the

course of this project. First and foremost, my thanks and gratitude to the Almighty, for His

immeasurable grace and profound kindness, I have been successful in completing all my works.

I would like to express my deepest gratitude to my academic advisor, Dr. Mohammad Rezwanul

Huq, Assistant Professor, Dept. of Computer Science & Engineering, East West University, for

his excellent guidance, patience and providing me with all the necessary support for the successful

completion of this project work.

I would never have been able to finish this work without the constant guidance and encouragement

from my parents. Successful completion of any task would be incomplete without them. Their

ceaseless cooperation and inspiration crowns all efforts with success.

Finally, a very special thanks to my friends, classmates and colleagues, who have inspired me and

supported me along the way.

Thanks for all your encouragement!

IV

Abstract

Due to the growth of population, it is essential to improve farm productivity to meet the rapidly

growing demand for food across the world. Technologies have been used widely to increase the

yielding of crops for the highly growing population. Bangladesh has an agriculture based economy.

Though majority population of the country lives on agriculture, but sadly, very few of them are

aided with the blessings of technology. The knowledge of different factors like weather condition,

soil type and particular attributes of the crops to plant is essential to improve the productivity of

agricultural crops. The proper management and easy accessibility of this knowledge can increase

the production of crops and decrease the loss of crops due to these natural factors. Formally

represented knowledge is based on a conceptualization. Ontology is an explicit specification of a

conceptualization. It defines a common vocabulary for researchers who need to share information

in a domain. It includes machine-interpretable definitions of basic concepts in the domain and

relations among them. Ontology driven applications face the challenge of integrating multiple

formats with the information stored in ontologies.

In this project, we have proposed an ontology-based knowledge management methodology for the

diagnosis of soybean diseases using Protégé and SPARQL. A set of new ontology concepts and

properties has been defined to build the conceptual model for the attributes that describes the

soybean plant, the factors that defines the soybean diseases and the relation between them. Finally,

we develop a web application for soybean disease analysis using a SPARQL endpoint at the

backend.

1

Contents

Declaration I

Letter of acceptance II

Acknowledgment III

Abstract IV

Contents 1

Chapter 1: Introduction 2

 1.1 Background Study 3

 1.2 Objective 3

 1.3 Relational Database Vs. Ontology Vocabulary 4

Chapter 2: System Specification 6

 2.1 Problem Statement 7

 2.2 Soybean Ontology 8

 2.3 Soybean Data Source 11

Chapter 3: Methodology 13

 3.1 Proposed System Architecture 14

 3.1.1 Ontology and Data Source 14

 3.1.2 Data Mapping 14

 3.1.3 Making the Ontology Available ‘Online’ 16

 3.1.4 The Web Application 16

Chapter 4: Implementation 17

 4.1 Create the Data Source in H2 Database Engine 18

 4.2 Create the Ontology in Protégé 20

 4.3 Data Mapping using Ontop in Protégé 24

 4.4 Upload the Ontology in Fuseki Server 27

 4.5 Develop a Web-based Application 27

Chapter 5: Conclusion 30

 5.1 Summary 31

 5.2 Limitation 31

 5.3 Future Work 32

APPENDIX

 Appendix A: Source code 33

 Appendix B: Expert Derived Rules for Soybean Disease Analysis 50

 Appendix C: Data Sets Used for Disease Diagnosis 52

References 54

2

Chapter 1

Introduction

3

1.1 Background Study

Agriculture is the backbone of Bangladesh. Majority of the population lives on agriculture and

agricultural products. To keep up with the increasing demand of food supply for the highly growing

population, technology must be used to increase the production of crops. Traditional method of

farming is used in most part of the country. These methods are having drawbacks like fewer yields

of crops and crop loss due to diseases.

Information and communication technologies (ICT) have significant importance in our lives across

several domains. Agriculture is no exception to that. The key characteristics of ICT are the

dissemination, access and exchange of information. ICT could play a vital role to increase the

production of agricultural products by providing relevant information to agronomists. Appropriate

management of information could help them benefit from proper planning and decision making.

The agriculture domain is huge and vast. Various aspects have to be integrated to build a fully

functioning system with all the information related to agriculture. Taking the soybean crop as

example, not only using pesticides alone can prevent its diseases; there are other factors which can

cause diseases such as soil status, weather conditions, condition of different plant attributes during

different times of a year, etc. Due to the lack of integration between such heterogeneous data,

extraction of single information like which time of the year is likely to be attacked by a particular

disease is difficult, which results into reduced production of soybean.

Building ontology is a complex task. An expert opinion is required to determine the dataset on a

particular domain. This project is based on the existing dataset of soybean disease analysis

mentioned on “Learning on being told and learning from examples: An experimental

comparison of the two methods of knowledge acquisition in the context of developing an

expert system for soybean disease diagnosis” by R. S. Michalsky and R. L. Chilausky, January

30, 1980. In our work, we have developed ontology using Protégé for defining the attributes and

factors that describes a soybean disease and define the relation between them. H2 database is used

as the source of the individual instances. This data source has been mapped to the ontology using

an open-source Ontology Based Data Access (OBDA) system, Ontop that allows querying

relational data sources through a conceptual representation of the domain of interest, provided in

terms of ontology, to which data sources are mapped. We prototype a web-based application to

take the factors and attributes as user inputs and make a disease analysis based on the inputs

provided.

1.2 Objective

The main objective of this project is to develop a knowledge based system using ontology that

consists of a user friendly platform to diagnose crop diseases, provided not only the conditions of

the crop plants but also the weather conditions, by the users.

In this project, we have developed a system for the diagnosis of soybean plant disease. A question

may rise, why choose soybean plant which is not much popular in Bangladesh and there are other

more important crops in our country which faces loss in yields every year due to diseases. We have

taken the soybean plant as an example; an expert derived set of rules and a training data set is

available for soybean disease (R.S.Michalski & R.L.Chilauski). We have developed a system for

soybean disease analysis based on these rules, trained it with the available training data set;

working with these actual data set has provided a certain level of validity to the project. And also

4

if real data set for other important crops of our country is provided, we can reuse our ontology to

develop a similar system for the diagnosis of those crops.

1.3 Relational Database vs. Ontology Vocabulary

Question may rise why data is stored in ontology rather than in relational database. Relational

database is a computer database in which all data is stored in relations which are tables with rows

and columns. Each table is composed of records called tuples and each record is identified by a

field called attribute containing a unique value. Every table shares at least one field with another

table in one-to-one, one-to-many or many-to-many relationships. These relationships allow the

database user to access the data in almost an unlimited number of ways and to combine the tables

as building blocks to create complex and very large databases.

Ontology, in the other hand, is a set of concepts and categories in a subject area or domain that

shows their properties and the relationship between them. Ontologies have become common on

the World Wide Web (WWW). The ontologies on the web range from large taxonomies

categorizing websites to categorization of products for sale and their features. The WWW

consortium (W3C) has developed the Resource Description Framework (RDF), a language for

encoding knowledge on web pages to make it understandable to electronic agents searching for

information. RDF is a simple language for expressing an RDF statement. RDF/XML is syntax to

express an RDF graph as an XML document. RDFS (RDF Schema) extends the vocabulary of

simple RDF. An RDF or triple is a statement with three constituent parts – a subject, a predicate

and an object. Example:

The sky is blue.

“The sky” is the subject, “is” the predicate or link, “blue” is the object or property. In RDF/XML,

each part is defined by a URI (Uniform Resource Identifier).

Ontologies are considered one of the pillars of the semantic web. The semantic web is an extension

of the web through standards by W3C consortium. The standards promote common data formats

and exchange protocols on the web, most fundamentally the RDF. On the semantic web,

vocabularies define the concepts and the relationships used to describe and represent a domain.

The role of vocabularies in the semantic web is to help data integration when ambiguities may

exist on the terms used in the different data sets, or when a bit of extra knowledge may lead to the

discovery of new relationships. Semantic data is assembled in a graph database that is unlike the

more common relational and hierarchical databases that have some elements of data that are more

important than others. A graph database uses arbitrary object relations with no intrinsic

importance.

SPARQL (Search Protocol and RDF Query Language) is a query language for semantic data

similar to SQL. Without semantic data, the owners of separate SQL sites would have to decide on

a common data format to share information that they could both understand. Unfortunately this

requires human intervention. In the semantic data model, the same base ontology for expressing

the meaning behind the data is used by different sites that makes it available for SPARQL

searching. SPARQL queries RDF datasets, rather like SQL queries in a relational database, except

SELECT identifies the triples values selected on the RDF graph that will be returned in the results

and where identifies the triple patterns in the RDF graph to be matched against the RDF dataset.

OWL (Web Ontology Language) classifies things in terms of semantics, or meaning, where a class

is a group of individuals that share common characteristics. A machine reader knows if an

5

individual is a member of a class and its object properties or data properties related to that OWL

class.

Ontology can provide more meaningful querying interface than database and ontology can use

reasoner to find hidden information to get better results. The main advantage of using ontologies

is the formalized semantics. In this way, a reasoner can automatically infer new statements without

writing specific codes.

In short, we can say:

 Databases have closed world assumption, but ontologies have open world assumption.

 In databases, each individual has a single unique name, but in ontologies, individuals might

have more than one name.

 Implicit information can be inferred from ontology, but databases cannot infer.

 The schema in ontology is large and complex, but databases have simple and smaller

schema. This implies that, the focus on formal semantics is much stronger in ontologies

than in databases. Because the aim of ontologies is to represent meaning rather than data.

In the upcoming chapters, a detailed description of the project work is provided. In chapter 2, we

define the problem statement of our project and how we have tried to solve it using ontology

vocabulary. A detail description of the soybean ontology is given here. In chapter 3, we propose

the system architecture and discuss the different levels in details. In chapter 4, we deal with the

implementation process. Finally we conclude in chapter 5 by discussing the limitations of our work

and what can be done to improve the system.

6

Chapter 2

System Specification

7

2.1 Problem Statement

In this project, we have used the existing large soybean data set for soybean disease analysis

(R.S.Michalski and R.L.Chilausky). Our objective is to build an ontology based on the data set

mentioned, use it as knowledge base for soybean plant, query the data set, and compare the query

results to some expert generated decision rules that could classify a soybean disease.

As mentioned earlier, this task can also be done by storing the data into a relational database. A

relational database is capable enough to handle a huge and complex data set. But the semantic

content in a web is increasing steadily day by day. Now-a-days, a greater number of web

applications are used to produce or consume semantic web content. It brings sentences to the web

which enhances the usability and the usefulness of the web and its interconnected resources.

The soybean disease data set that we have used for this project is huge. Diagnosis of soybean

disease was selected as the representative of the problems one faces in the diagnosis of the plant

diseases in general. The knowledge base was developed with sufficient information to diagnose

the following 15 diseases:

1. Diaporthe Stem Canker

2. Charcoal Rot

3. Rhizoctonia Root Rot

4. Phytophthora Root Rot

5. Brown Stem Rot

6. Powdery Mildew

7. Downy mildew

8. Brown Spot

9. Bacterial Blight

10. Bacterial Pustule

11. Purple Seed Stain

12. Anthracnose

13. Phyllostica Leaf Spot

14. Alternaria Leaf Spot

15. Frog Eye Leaf Spot

A description space for diagnosing the selected soybean diseases was developed in collaboration

with an expert in soybean pathology. The variables used were 35 plant and environmental

descriptors and one decision variable that specifies the diagnosis. Each of these descriptors can

have more than one value. They may contain structured domains and maintain hierarchies (parent-

child nodes). Relationship among the variables may also exist. All these characteristics make the

soybean database a really big and complex one. With all the hierarchies and relationships among

the variables, using the relational database to store all these information becomes quite

troublesome. A database would require multiple tables, quite a number of one-to-many, many-to-

one and many-to-many relations. Accessing data gets even more complicated. The larger the

database grows, the more complicated it gets to maintain and query this huge database. Instead,

we build an ontology for these 35 plant and environmental descriptors, define the relationship

among them in the form of RDF triples. We store the values of the descriptor variables in a simple,

flat table in a database. We map these values to the corresponding descriptors defined in the

ontology. This makes our data set simpler to understand and easily accessible.

8

Plant Descriptor

Environmental Descriptor

Plant Local Descriptor

Plant Global Descriptor

2.2 Soybean Ontology

In this section, we propose the soybean ontology, which consists of the plant and environmental

descriptors, the hierarchy of the attributes that describes the plant and environmental descriptors

and relationship between them.

The ontology contains two main concepts (classes) – PlantDescriptor and Attribute.

PlantDescriptor – The concept “PlantDescriptor” defines the different types of plant and

environmental descriptors for soybean plant. There are three types of descriptors –

Environmental Descriptor, Plant Global Descriptor and Plant Local Descriptor. The hierarchy for

this concept is as follows:

Fig 2.1: Hierarchy of the concept “PlantDescriptor”

Implementation of this hierarchy in ontology is quite simple. We can define the concept

“PlantDescriptor” in triples (a subject, a predicate and an object) format with the following OWL

axioms:

:PlantDescriptor :hasType ‘Environmental_Descriptor’.

:PlantDescriptor :hasType ‘Plant_Global_Descriptor’.

:PlantDescriptor :hasType ‘Plant_Local_Descriptor’.

:hasType rdf:type owl:DatatypeProperty.

:hasType rdfs:domain :PlantDescriptor.

Here, “hasType” is the data property for the concept “PlantDescriptor” whose domain is restricted

to the concept. We relate this concept to its types by defining this data property. The types for

“PlantDescriptor” are stored in the data source, which are mapped later as the individual instances

of the mentioned concept to the ontology using data mapping techniques.

Attribute – The concept “Attribute” defines different types of attributes that describes the different

descriptors. There are 35 attributes that describes the 3 types of plant and environmental

descriptors. The attributes that have been used in this project are:

1. Time of Occurrence (TOC)

2. Plant stand (Plant_Stand)

3. Precipitation (Precip)

9

4. Temperature (Temp)

5. Occurrence of hail (Hail)

6. Number of years crop repeated (Crop_hist)

7. Damaged area (Area_damaged)

8. Severity (Severity)

9. Seed treatment (Seed_tmt)

10. Seed germination (Germination)

11. Plant growth (Plant_Growth)

12. Condition of leaves (COL)

a. Leafspots-halos

b. Leafspots-margin

c. Leafspot size

d. Leaf shredding

e. Leaf malformation

f. Leaf mildew growth

13. Condition of stem (COS)

a. Presence of lodging

b. Stem cankers

c. Canker lesion color

d. Fruiting pod on stem

e. External decay

f. Mycelium on stem

g. Internal discoloration

h. Sclerotia

14. Condition of fruits-pods (COF)

a. Fruit-spots

15. Condition of seed (COSeed)

a. Mold growth

b. Seed discoloration

c. Seed size

d. Seed shriveling

16. Condition of roots (COR)

We can define these attributes as the subclasses of the concept “Attribute” in triples format with

the following OWL axioms:

:TOC rdfs:subClassOf :Attribute.

:Plant_Stand rdfs:subClassOf :Attribute.

:Precip rdfs:subClassOf :Attribute.

:Temp rdfs:subClassOf :Attribute.

:Hail rdfs:subClassOf :Attribute.

10

:Crop_hist rdfs:subClassOf :Attribute.

:Area_damaged rdfs:subClassOf :Attribute.

:Severity rdfs:subClassOf :Attribute.

:Seed_tmt rdfs:subClassOf :Attribute.

:Germination rdfs:subClassOf :Attribute.

:Plant_Growth rdfs:subClassOf :Attribute.

:COL rdfs:subClassOf :Attribute.

:COS rdfs:subClassOf :Attribute.

:COF rdfs:subClassOf :Attribute.

:COSeed rdfs:subClassOf :Attribute.

:COR rdfs:subClassOf :Attribute.

These attributes have multiple values that are stored in our data source. Moreover, some of them

may have structured domain. Domains of structured descriptors can be represented as tree

hierarchies in which the parent nodes represent more generalized concepts than concepts

represented by their descendant nodes. For example, structured domain were used for the subclass

“Area_damaged”:

Fig 2.2: Hierarchy of the subclass “Damage Areas” of concept “Attribute”

We define this hierarchy by assigning a data property “hasAreaDamaged” to “Area_damaged”.

The data property is further extended by two sub-properties – “hasWholeAreaDamaged” and

“hasNotWholeAreaDamaged”. The OWL axioms for this complex hierarchy is actually quite

straightforward:

:Area_damaged :hasWholeAreaDamaged ‘Whole_field’.

:Area_damaged :hasNotWholeAreaDamaged ‘Scattered’.

:Area_damaged :hasNotWholeAreaDamaged ‘Upper_areas’.

:Area_damaged :hasNotWholeAreaDamaged ‘Low_areas’.

:hasWholeAreaDamaged rdfs:subPropertyOf :hasAreaDamaged.

:hasNotWholeAreaDamaged rdfs:subPropertyOf :hasAreaDamaged.

:hasAreaDamaged rdf:type owl:DatatypeProperty.

Damaged Areas

Whole Area Not Whole Area

Upper Areas Scattered

Low Areas

11

:hasAreaDamaged rdfs:domain :Area_damaged.

The values for “Area_damaged” are stored in the data source, which are mapped later as the

individual instances of the mentioned concept to the ontology using data mapping techniques.

Similarly, more complex hierarchies can be implemented in ontology which is easily

understandable and also data access is more flexible.

Now comes the matter of relating the concept “PlantDescriptor” to the concept “Attribute”. A plant

descriptor is described by multiple attributes. The relationship between two concepts can be

defined by assigning an object property.

Fig 2.3: Relationship between two concepts

For example, we assign an attribute value “July” for the attribute “TOC” for the concept

“PlantDescriptor”. This can be easily represented using OWL axioms as follows:

:PlantDescriptor :hasType ‘Environmental_Descriptor’.

:PlantDescriptor :hasAttribute :TOC.

:PlantDescriptor :hasTOC ‘July’.

2.3 Soybean Data Source
Each of the concepts are described by multiple values. It is not practical to store all these values to

the ontology. Rather, we store all the values for all the concepts and their sub-concepts to a

database and map that values to the concepts in ontology. This is more feasible, because, we can

reuse both the ontology and the data source. A concept may have multiple values, even same value

may be mapped to multiple concepts. If we store both the concepts and their values either in a

database or in ontology, in both cases, the idea is not very effective; if we use a separate database

for the values and use it as a data source, we can reuse the data for multiple concepts very easily.

For example, the concept “Hail” has two possible values – “Yes” and “No”. Another concept

“Lodging” also has the same values. If we store the whole thing in database, we need to define two

different tables for storing the two different concepts with same values; if we store the whole thing

in ontology the same thing happens – we need to define the values separately for the two different

concepts. To avoid these redundancies, we have created a table in the database for storing all the

attribute values, which is served as the data source, store these values – “Yes” and “No”, assign

Plant Descriptor Attribute

hasAttribute

12

them with a particular type. Now we can map these values no matter how many times we need

them in the ontology. We define once, and we use them multiple times without any redundancies.

13

Chapter 3

Methodology

14

3.1 Proposed System Architecture

The system we proposed in this project is built maintaining four different levels:

3.1.1 Ontology and Data Source
Ontology is created which stores database metadata information within the basic ontology

structure. Ontology is a formal explicit description of concepts in a particular domain. Ontological

model includes classes, data types, object properties, data properties, assertions, individual

instances of a class and other semantics. An ontology together with a set of individual instances of

classes constitutes a knowledge base. We propose a knowledge base for the purpose to analyze

soybean disease. The reasons for soybean disease depends on not only environmental conditions,

but also on the condition of different plant attributes. We have built an ontology which consists of

the hierarchy of descriptors that describe both the environmental conditions and the soybean plant

conditions that causes diseases, attributes that describes both kind of descriptors and the relation

between them.

We have used Protégé as the ontology editor. It stores the ontology in both OWL and RDF/XML

formats; we prefer the RDF/XML formats, as it is known to have bugs in OWL format in Protégé.

Using Protégé as the ontology editor has provided lots of advantages. Protégé’s plug-in

architecture can be adapted to build complex ontology-based applications. We have integrated the

output of Protégé to a rule engine which helped us to query the data from any platform we choose.

We have discussed the soybean knowledge base earlier. It is a large ontology and has complex

hierarchies. But using Protégé and ontology, we have created the knowledge base in a systematic

way.

We have a database that is used as a data source for those descriptor and attribute values that cause

soybean diseases. The database contains two tables - one for storing the descriptor types that

defines the plant and weather conditions, and the other one for storing the attribute values

describing these descriptor types.

We have used H2 database engine. H2 database is a free SQL database that is written in Java. We

connect Protégé to H2 database via a JDBC connection. We use the data base as a data source to

map the values to its corresponding concepts. A mapping tool is used to access the data from the

data source by querying with SQL.

3.1.2 Data Mapping
The descriptors and the attributes built in the ontology are now mapped to their corresponding

values stored in the data source which resides in the database. The database-to-ontology mapping

is generally regarded as a case of data integration. The goal of data integration system is to provide

a common interface to various data sources to enable users to focus on specifying what they want.

In our proposed system, the database is the source schema and the ontology model is the target

15

Temp

hasNormalTemp hasAbnormalTemp

Fig 3.1: Proposed System Architecture

schema. Therefore, data integration or data mapping can be described as the problem of creating

correspondences between sets of relational and ontological data. To define the problem of database

and ontology mapping, taking our proposed system into account, we are given:

 An ontology expressed in RDF; the ontology contents is viewed as a set of triples.

 A relational database instance, whose contents are stored into tuples.

The objective of data mapping is to find mappings and create a set of correspondences relating

ontological data – predicates in the ontology, and the relational data tuples.

For example, the concept “Temp” has the following hierarchy stored in the ontology:

Fig 3.2: Hierarchy for concept “Temp” stored in ontology

The data source contains three possible values for the concept – Normal, Greater_than_normal,

Less_than_normal. After mapping, the ontology will look like:

16

Temp

hasNormalTemp hasAbnormalTemp

Normal
Greater_than_normal Less_than_normal

Fig 3.3: Concept “Temp” after data mapping

Therefore, the triples are now complete, and it has now the following vocabulary:

:Temp :hasNormalTemp ‘Normal’ .

:Temp :hasAbnormalTemp ‘Greater_than_normal’.

:Temp :hasAbnormalTemp ‘Less_than_normal’

3.1.3 Making the Ontology Available “Online”

The ontology is now uploaded to Fuseki server. Fuseki is a SPARQL endpoint that allows to query

and alter a graph. SPARQL is an RDF (Resource Description Framework) query language that is

a semantic query language for databases able to retrieve and manipulate data stored in triple format.

Fuseki is the part of Apache Jena project, but is distributed as a separate package. Jena is a java

based framework for building semantic applications. Fuseki is an HTTP server with all the Jena

modules together. SPARQL queries and updates can be sent to Fuseki using simple HTTP requests

and get responses in various formats such as JSON, XML, and CSV etc. The data can be stored

either in memory or in a TDB file.

3.1.4 The Web Application

Although Apache Jena Fuseki is based on Java framework, it’s just HTTP calls, so any platform

can be used on the client side if a client-server architecture is required. In our project, we have

used PHP as the client side, connected Fuseki server to the client side using a SPARQL library file

for PHP, and built a user input interface using PHP and HTML. It is a very simple and

straightforward interface. What the user needs to do is provide the inputs by selecting different

options from a drop down selection menu, submit the input form and wait for the result. The system

then responses with a result showing whether the combination of provided inputs result into a

soybean disease or not.

17

Chapter 4

Implementation

18

This project has been implemented in a Windows environment. Protégé version 5.1.0 has been used to

build the ontology. H2 database engine is used as the data source for storing all the attribute values. We

have used Fuseki-server as the SPARQL endpoint. Web application has been developed using PHP,

HTML. The application is hosted in XAMPP.

4.1 Create the Data Source in H2 Database Engine

We have used H2 database engine as the data source for storing the descriptor types of the

soybean plant disease and the attribute values that causes them. For the plant descriptor types, we

have created the table TBL_PLANTDESCRIPTOR and for the attribute values we have table

TBL_ATTRIBUTE.

I. Code for creating the tables:

 TBL_PLANTDESCRIPTOR

CREATE TABLE tbl_plantdescriptor(

 PD_ID int(10) NOT NULL,

 PD_NAME varchar(40),

PRIMARY KEY PD_ID

);

 TBL_ATTRIBUTE

CREATE TABLE tbl_attribute(

 ATT_ID int(10) NOT NULL,

 ATT_NAME varchar(40),

 ATT_TYPE varchar(10),

PRIMARY KEY ATT_ID

);

II. Code for inserting the data into the tables:

 TBL_PLANTDESCRIPTOR

INSERT INTO TBL_PLANTDESCRIPTOR

VALUES

(1, ‘Environmental_Descriptor’),

(2, ‘Plant_Global_Descriptor’),

(3, ‘Plant_Local_Descriptor’);

The table in H2 database engine looks like:

19

Fig 4.1: TBL_PLANTDESCRIPTOR

 TBL_ATTRIBUTE

INSERT INTO TBL_ATTRIBUTE

VALUES

(1, ‘April’, ‘I’),

(2, ‘May’, ‘I’),

(3, ‘June’, ‘I’),

(4, ‘July’, ‘I’),

(5, ‘August’, ‘I’),

(6, ‘September’, ‘I’),

(7, ‘October’, ‘I’),

(8, ‘Normal’, ‘II’),

(9, ‘Abnormal’, ‘II’),

(10, ‘Greater_than_normal’, ‘II’),

(56, ‘Galls_cysts’, ‘XIX’),

(57, ‘DNA’, ‘XX’);

The table in H2 database engine looks like:

20

Fig 4.2: TBL_ATTRIBUTE

4.2 Create the ontology in Protégé

In this section, we propose a system for developing the knowledge base for soybean disease

analysis. We have built an ontology to show the hierarchy of the soybean plant and

environmental descriptors and the attributes that have impact on the soybean plant diseases and

the relationship between them. Protégé has been used as the ontology editor.

Fig 4.3: Concepts in Soybean Ontology

21

We have two new concepts in the Soybean ontology. One is the PlantDescriptor, which defines

the different descriptor types which describes a soybean plant and also the environmental factors

that could cause diseases and another one is the Attribute that describes these different descriptors.

The relationship between the PlantDescriptor and the Attribute is defined by an object property

“hasAttribute”,

Fig 4.4: Relationship between PlantDescriptor and Attribute Concepts

The concept Attribute is further extended into several subclasses – temp, TOC, area_damaged,

leaves etc. to describe each of the PlantDescriptor.

Fig 4.5: Sub-classes of Attribute concept

These attirbutes are assigned corresponding data properties to describe them. These data properties

are further classified into sub-properties to describe the attributes’ structured charactersitics. For

example, the sub-attribute “Precip” is created to define the Precipitation of type Attribute. It is

assigned the data property “hasPrecip” to describe the corresponding attribute values. It could have

three possible values – Normal, Greater_than_normal, Less_than_normal. We can present this

attribute and along with its corresponding values in a structured way:

22

Fig 4.6: Structured domain for “Precipitation”

To implement this structured domain, we define sub-properties “hasNormalPrecip” and

“hasAbnormalPrecip” to the data property “hasPrecip”.

Fig 4.7: Data property “hasPrecip” and their sub-properties

These data properties are assigned to their corresponding values – Normal, Greater_than_normal,

Less_than_normal, which are stored in the database, using data mapping technique.

Similarly, these sub-properties can be further classified into another set of sub-properties if needed.

For example, the sub-attribute “COSeed” is created to define the “Condition of Seeds” of type

Attribute. It is assigned the data property “hasSeed” to describe the corresponding attribute values.

It could have two possible values – Normal and Abnormal. Abnormality of seeds can be further

classified based on some other seed characterstics. We can present these values in a structured

way:

Precipitation

Normal Abnormal

Greater_than_normal Less_than_normal

23

Condition of Seed

Normal Abnormal

Mold Growth

Seed Discolor

Seed Shriveling

Seed Size

Absent

Present

Absent Present

Absent Present

Less_than_normal Greater_than_normal

Fig 4.8: Structured domain for “Condition of Seed”

To implement this structured domain, we define sub-properties “hasNormalSeed” and

“hasAbnormalSeed” to the data property “hasSeed”. The sub-property “hasAbnormalSeed” seed

is extended further to classify four other characteristics of seed – “hasMoldGrowth”,

“hasSeedDiscolor”, “hasSeedShriveling”, “hasSeedSize”.

Fig 4.9: Data property “hasSeed” and its sub-properties

24

In this way, we can built more complex hierarchies in a very simple way. If we had to build this

hierarchy in a relational database it would have been more complicated, it would require more

tables and one-to-many and many-to-one relations. Using Protégé as the ontology editor have

helped us to avoid such complexities.

4.3 Data mapping using Ontop Tab in Protégé

Now we map the data from the data source in H2 database engine to our ontology in Protégé. All

the data are mapped to their corresponding classes and subclasses as “individual instances”

according to the hierarchy we have defined. The data mapped as individual instances are the

terminating point of the hierarchy. Mapping is done in two ways – data property mapping and

object property mapping.

 Data Property Mapping: Mapping procedure is very easy and simple. For example, we

map the concept “PlantDescriptor” with its corresponding values stored in the database

through data property mapping. What we have to do is, just define a name for the

individuals to which the values from the database are to map as instances of the

mentioned concept. We assign this individual to the corresponding data property as RDF

triples vocabulary. Then we make an SQL query to get the data into the corresponding

individuals of the ontology. The whole process is done using the Ontop plugin for

Protégé.

Fig 4.10: Mapping “PlantDescriptor” Individuals using Ontop

25

Now the data is mapped to the concept “PlantDescriptor”. It has now three individuals –

PlantDescriptor/1, PlantDescriptor/2, PlantDescriptor/3, and they have three corresponding

instances – Environmental_Descriptor, Plant_Global_Descriptor, Plant_Local_Descriptor.

Fig 4.11: Individuals and instances for “PlantDescriptor”

 Object Property Mapping: Now we assign an object property to our concept

“PlantDescriptor”. An object property is used to connect two different concepts. In our

example ontology, we establish the relationship between the concepts “PlantDescriptor”

and “Attribute” via the object property “hasAttribute”. The concept “Attribute” has several

subclasses, so what really happens here is that, an individual instance of “PlantDescriptor”

is connected to one or more individual instances of the subclasses of the concept

“Attributes”.

For example, we map the individual instance “Environmental_Descriptor” of the concept

“PlantDescriptor” with the individual instance “Greater_than_normal” of the subclass

“Precip” of the concept “Attribute” with the object property “hasAttribute”. First we need

to map data property for “Precip” with its individual instance “Greater_than_normal” and

“Less_than_normal” via data property “hasAbnormalPrecip”. Then we do the object

property mapping in the same way we did the data property mapping, only difference is,

we provide the object property instead of data property.

26

Fig 4.12: Mapping “PlantDescriptor” Individuals using Ontop

Now the data is mapped to the subclass “Precip” of the concept “Attribute”. It has now two

individuals for the data property “hasAbnormalPrecip” – Precip/10 and Precip/11, and they have

two corresponding instances – Greater_than_normal and Less_than_normal.

Fig 4.13: Individuals and instances for “Precip”

27

We have completed all other mappings following the same procedure. In this way, we can use

ontology to store large and complex databases easily.

4.4 Upload the Ontology to Fuseki Server

To access the data stored in ontology, we need to upload it somewhere in the localhost. We upload

our ontology to the SPARQL endpoint, Fuseki server. The upload procedure is quite simple. We

saved our ontology to a local drive, envoke the Fuseki server from the command prompt using the

follow command:

java -Xmx1200M -jar fuseki-server.jar --update --loc=Data

/myDataset

Then the Fuseki server is started. We upload the ontology and now our ontology is ready for access

from any platform we want.

4.5 Developing a Web-based Application

Our main objective is to provide a user platform for soybean disease diagnosis where the user will

have the privilege to provide symptoms for the soybean plant and get a response from the system

developed whether the symptoms result in a disease or not. To achieve this, we have developed a

web application using PHP, where a user can find the expert defined symptoms for a particular

soybean disease, as well as provide the real symptoms and check for the presence of a disease.

There is no direct method to query the uploaded ontology from the PHP client side program. We

have used a SPARQL library file for PHP, developed in the University of Southampton. This

library file is used to connect the Fuseki server to PHP, which enables querying the ontology using

SPARQL.

The home page of our application contains the list of 15 soybean diseases we have diagnosed.

Fig 4.14: Home page of the web application

28

If the user wants to see the expert defined symptoms for any particular disease, one has to click on

“View Details”, the link will take the user to the page for that particular disease.

Fig 4.15: Symptoms for disease “Diaporthe-Stem-Canker”

The user can also provide symptoms as inputs and check for the presence of a disease. There is a

user input form, where the user just needs to select the symptoms from a drop-down selection

menu, and the system will perform diagnosis for disease. Clicking on the link “Diagnosis for

soybean disease” will take the user to the input form.

After providing all the required inputs, the system matches the symptoms and replies with the

result whether a disease has occurred or not.

29

Fig 4.16: User input form (left) and disease diagnosed in response to the provided input

(right)

30

Chapter 5

Conclusion

31

5.1 Summary

In this project, we have presented our experience working with ontology based tools to build a

very simple web application that exposes the capability of Protégé to create an ontology in RDF

format and use it as the vocabulary for a PHP application. We have used an open source OBDA

system, Ontop that allows querying relational data sources through a domain provided in terms of

ontology and mapping the data sources to the ontology. The key advantage of this mapping

procedure is that no interpretation of data needs to be carried out to be stored as ontology instances.

This has reduced a lot of work, because interpretation of data in existing data sources may cause

some scalability issues with existing legacy applications. This approach is also beneficial where it

is not practical to store all data as a part of the respective domain ontology, especially for systems

with a huge volume of data. Even in relational database, storing data with structured domain is

also very complex. Mapping technique has helped us to get rid of all these tedious work.

The use of Fuseki-server as the SPARQL endpoint has provided us with the advantage to use it as

a server for any client-side programming for a client-server based application. The Fuseki-server

has served as the triple store for the ontology vocabulary. A PHP library file has been used to

connect Fuseki-server to the PHP application that has been developed as a prototype system for

the users for the diagnosis of soybean disease.

5.2 Limitations

Due to the limitation of time, many important features that could have made the application more

demanding, are absent. There are scopes for immense improvement to enhance this project.

 Any application is all about attracting users with flexible, user-friendly interface with

attractive and useful features and utilities. Our application is quite flat and simple; it lacks

attractiveness. It is user-friendly and quite flexible to use, but it still needs some

improvement in the GUI.

 We have not exercised the advantage of SPARQL at its best; further work must be done to

handle more complex situations that may involve multiple ontology assertions.

 Protégé has some issues with performance; the larger the ontology gets, the more time it

takes to map the data from data source. This becomes a major issue for applications with

huge ontology.

 The manual establishment of mappings between database schemas and ontologies is

considered as an additional burden in the development process. It is time consuming and

error-prone task.

 At present, the application contains some defined set of rules for soybean disease diagnosis,

based on which the disease analysis is done. There is no provision for a domain expert to

alter or generate new rules for the respective domain.

32

The application is developed as a prototype system for soybean disease analysis. This can be

made more generic. The same ontology can be reused, even multiple ontologies can be used to

diagnose multiple diseases in the same platform.

5.3 Future Work

This project has been developed with the vision of future possibilities that could bring change in

the sector of agriculture. Further studies and research work could add diversity to this system which

could bring a change to our society for good.

 For end-users, the GUI interfaces can be improved to add more utilities and make the

application more user-friendly.

 At present, our project work support all major databases, but later on we could further study

to make it possible to support other kind of data sources like graph databases and document

oriented databases, etc.

 Domain experts must have the privilege to alter the existing rules and to insert new rules

for the respective domain. Regular updating information would make the best use of this

application.

 Fuzzy logic can also be applied for real predictions. For example, based on some symptoms

provided by the user, the system would reply with the possibility of the occurrence of a

disease.

33

Appendix A: Source Code

34

1. SPARQL Query for viewing disease symptoms
<html>

 <head>

 <title>Soybean Disease Analysis</title>

 </head>

<body>

 <?php

 require_once("sparqllib.php");

 $db = sparql_connect("http://localhost:3030/myDataset/sparql");

 if(!$db) { print sparql_errno() . ": " . sparql_error(). "\n";

exit; }

 sparql_ns("foaf","http://xmlns.com/foaf/0.1/");

 sparql_ns("rdf", "http://www.w3.org/1999/02/22-rdf-syntax-ns#");

 sparql_ns("rdfs", "http://www.w3.org/2000/01/rdf-schema#");

 $sparql = "PREFIX : <http://localhost/soy_test1#>

 select distinct ?Descriptor_Type ?Attributes

?Values

 where{

 {?PlantDescriptor :hasType

?Descriptor_Type .

 ?PlantDescriptor :hasAttribute

?Attributes .

 ?Attributes :hasTOC 'August' .

 ?Attributes :hasTOC ?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type .

 ?PlantDescriptor :hasAttribute

?Attributes .

 ?Attributes :hasTOC 'September' .

 ?Attributes :hasTOC ?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type .

 ?PlantDescriptor :hasAttribute

?Attributes .

 ?Attributes :hasNormalPrecip

'Normal' .

 ?Attributes :hasNormalPrecip ?Values

.}

 union

35

 {?PlantDescriptor :hasType

?Descriptor_Type .

 ?PlantDescriptor :hasAttribute

?Attributes .

 ?Attributes :StemCankersPresent

'Above_second_node' .

 ?Attributes :StemCankersPresent

?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type .

 ?PlantDescriptor :hasAttribute

?Attributes .

 ?Attributes :hasStemFruitingBodies

'Present' .

 ?Attributes :hasStemFruitingBodies

?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type .

 ?PlantDescriptor :hasAttribute

?Attributes .

 ?Attributes :hasNormalFruits_Pods

'Normal' .

 ?Attributes :hasNormalFruits_Pods

?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type .

 ?PlantDescriptor :hasAttribute

?Attributes .

 ?Attributes :hasAbnormalTemp

'Greater_than_normal' .

 ?Attributes :hasAbnormalTemp

?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type .

 ?PlantDescriptor :hasAttribute

?Attributes .

 ?Attributes :hasStemCankerLeison

'Brown' .

 ?Attributes :hasStemCankerLeison

?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type .

 ?PlantDescriptor :hasAttribute

?Attributes .

36

 ?Attributes :hasSameCropHist

'Same_last_year' .

 ?Attributes :hasSameCropHist

?Values .}

 }";

 $result = sparql_query($sparql);

 if(!$result) { print sparql_errno() . ": " . sparql_error(). "\n";

exit; }

 $fields = sparql_field_array($result);

 print "<h3 style=\"text-align:center\">Symptoms : Diaporthe-stem-

canker</h3>";

 //print "<p>Number of rows: ".sparql_num_rows($result)."

results.</p>";

 print "<table border=\"1\"; align=\"center\">";

 print "<tr>";

 foreach($fields as $field)

 {

 print "<th>$field</th>";

 }

 print "</tr>";

 while($row = sparql_fetch_array($result))

 {

 print "<tr>";

 foreach($fields as $field)

 {

 print "<td>$row[$field]</td>";

 }

 print "</tr>";

 }

 print "</table>";

 ?>

</body>

</html>

2. SPARQL Query for disease diagnosis
<?php

session_start();

require_once("sparqllib.php");

$db = sparql_connect("http://localhost:3030/myDataset/sparql");

if(!$db) { print sparql_errno() . ": " . sparql_error(). "\n"; exit; }

sparql_ns("foaf","http://xmlns.com/foaf/0.1/");

37

sparql_ns("rdf", "http://www.w3.org/1999/02/22-rdf-syntax-ns#");

sparql_ns("rdfs", "http://www.w3.org/2000/01/rdf-schema#");

$sparql1 = "PREFIX : <http://localhost/soy_test1#>

 select distinct ?Descriptor_Type ?Factors ?Values where

{

 {?PlantDescriptor

:hasType ?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors .

?Factors :hasTOC '" .$_POST['TOC']. "' . ?Factors :hasTOC ?Values .}

 union

 {?PlantDescriptor

:hasType ?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors .

?Factors :hasPlantStand '" .$_POST['PS']. "' . ?Factors :hasPlantStand

?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasAbnormalPrecip '" .$_POST['Precip']. "' . ?Factors :hasAbnormalPrecip

?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasNormalTemp '" .$_POST['Temp']. "' . ?Factors :hasNormalTemp ?Values

.}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasAbnormalTemp '" .$_POST['Temp']. "' . ?Factors :hasAbnormalTemp

?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasHail '" .$_POST['Hail']. "' . ?Factors :hasHail ?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasSameCropHist '" .$_POST['Crop_hist']. "' . ?Factors :hasSameCropHist

?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasNotWholeAreaDamaged '" .$_POST['Area_damaged']. "' . ?Factors

:hasNotWholeAreaDamaged ?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

38

:hasAreaDamaged '" .$_POST['Area_damaged']. "' . ?Factors :hasAreaDamaged

?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasSeverity '" .$_POST['Severity']. "' . ?Factors :hasSeverity ?Values

.}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasSeedTmt '" .$_POST['Seed_tmt']. "' . ?Factors :hasSeedTmt ?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasGermination '" .$_POST['Germination']. "' . ?Factors :hasGermination

?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasPlantGrowth '" .$_POST['Plant_growth']. "' . ?Factors :hasPlantGrowth

?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:LeafSpotAbsent '" .$_POST['Leafspots-halo']. "' . ?Factors

:LeafSpotAbsent ?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasLeafSpotsMarg '" .$_POST['Leafspots-margin']. "' . ?Factors

:hasLeafSpotsMarg ?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasLeafSpotsSize '" .$_POST['Leafspot-size']. "' . ?Factors

:hasLeafSpotsSize ?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasLeafShred '" .$_POST['Leaf-Shread']. "' . ?Factors :hasLeafShred

?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasLeafMalf '" .$_POST['Leaf-malf']. "' . ?Factors :hasLeafMalf ?Values

.}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

39

:LeafMildAbsent '" .$_POST['Leaf_mild']. "' . ?Factors :LeafMildAbsent

?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasStemLodging '" .$_POST['lodging']. "' . ?Factors :hasStemLodging

?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:StemCankersPresent '" .$_POST['stem_cankers']. "' . ?Factors

:StemCankersPresent ?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasStemCankerLeison '" .$_POST['canker-leison']. "' . ?Factors

:hasStemCankerLeison ?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasStemFruitingBodies '" .$_POST['fruiting_bodies']. "' . ?Factors

:hasStemFruitingBodies ?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:ExternalDecayPresent '" .$_POST['external_decay']. "' . ?Factors

:ExternalDecayPresent ?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasStemMycelium '" .$_POST['mycelium']. "' . ?Factors :hasStemMycelium

?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasStemIntDiscolor '" .$_POST['intdiscolor']. "' . ?Factors

:hasStemIntDiscolor ?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasStemSclerotia '" .$_POST['sclerotia']. "' . ?Factors

:hasStemSclerotia ?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasNormalFruits_Pods '" .$_POST['fruit_pods']. "' . ?Factors

:hasNormalFruits_Pods ?Values .}

 union

40

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasDiseasedFruits_Pods '" .$_POST['fruit_spots']. "' . ?Factors

:hasDiseasedFruits_Pods ?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasNormalSeed '" .$_POST['COSeed']. "' . ?Factors :hasNormalSeed ?Values

.}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasMoldGrowth '" .$_POST['mold_growth']. "' . ?Factors :hasMoldGrowth

?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasSeedDiscolor '" .$_POST['seed_discolor']. "' . ?Factors

:hasSeedDiscolor ?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasSeedSize '" .$_POST['seed_size']. "' . ?Factors :hasSeedSize ?Values

.}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasSeedShriveling '" .$_POST['seed_shriveling']. "' . ?Factors

:hasSeedShriveling ?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasNormalRoots '" .$_POST['COR']. "' . ?Factors :hasNormalRoots ?Values

.}

 filter (regex('" .$_POST['TOC']. "',

'July') || regex('" .$_POST['TOC']. "', 'August') || regex('"

.$_POST['TOC']. "', 'September') || regex('" .$_POST['TOC']. "',

'October')) .

 filter (regex('" .$_POST['PS']. "',

'Normal') || regex('" .$_POST['PS']. "', 'DNA')) .

 filter regex('" .$_POST['Precip']."',

'Greater_than_normal') .

 filter (regex('" .$_POST['Temp']. "',

'Normal') || regex('" .$_POST['Temp']."', 'Greater_than_normal')) .

41

 filter (regex('" .$_POST['Hail']. "',

'Yes') || regex('" .$_POST['Hail']. "', 'No') || regex('"

.$_POST['Hail']. "', 'DNA')) .

 filter (regex('" .$_POST['Crop_hist']. "',

'Same_last_year') || regex('" .$_POST['Crop_hist']. "',

'Same_last_two_years')) .

 filter (regex('" .$_POST['Area_damaged'].

"', 'Scattered') || regex('" .$_POST['Area_damaged']. "', 'Low_areas') ||

regex('" .$_POST['Area_damaged']. "', 'DNA')) .

 filter (regex('" .$_POST['Severity']. "',

'Severe') || regex('" .$_POST['Severity']. "', 'Potentially_severe') ||

regex('" .$_POST['Severity']. "', 'DNA')) .

 filter (regex('" .$_POST['Seed_tmt']. "',

'Fungicide') || regex('" .$_POST['Seed_tmt']. "', 'None') || regex('"

.$_POST['Seed_tmt']. "', 'DNA')) .

 filter (regex('" .$_POST['Germination'].

"', '90-100') || regex('" .$_POST['Germination']. "', '80-89') ||

regex('" .$_POST['Germination']. "', 'Less_than_80') || regex('"

.$_POST['Germination']. "', 'DNA')) .

 filter (regex('" .$_POST['Plant_growth'].

"', 'Abnormal') || regex('" .$_POST['Plant_growth']. "', 'DNA')) .

 filter regex('" .$_POST['COL']."',

'Abnormal') .

 filter regex('" .$_POST['Leafspots-

halo']."', 'Absent') .

 filter regex('" .$_POST['Leafspots-

margin']."', 'DNA') .

 filter regex('" .$_POST['Leafspot-

size']."', 'DNA') .

 filter regex('" .$_POST['Leaf-Shread']."',

'Absent') .

 filter regex('" .$_POST['Leaf-malf']."',

'Absent') .

 filter regex('" .$_POST['Leaf_mild']."',

'Absent') .

 filter regex('" .$_POST['COS']."',

'Abnormal') .

 filter (regex('" .$_POST['lodging']."',

'Yes') || regex('" .$_POST['lodging']."', 'No')) .

 filter regex('"

.$_POST['stem_cankers']."', 'Above_second_node') .

 filter (regex('" .$_POST['canker-

leison']."', 'Brown') || regex('" .$_POST['canker-leison']."', 'DNA')) .

 filter regex('"

.$_POST['fruiting_bodies']."', 'Present') .

 filter regex('"

.$_POST['external_decay']."', 'Firm_and_dry') .

 filter regex('" .$_POST['mycelium']."',

'Absent') .

42

 filter regex('" .$_POST['intdiscolor']."',

'None') .

 filter regex('" .$_POST['sclerotia']."',

'Absent') .

 filter regex('" .$_POST['fruit_pods']."',

'Normal') .

 filter regex('" .$_POST['fruit_spots']."',

'DNA') .

 filter regex('" .$_POST['COSeed']."',

'Normal') .

 filter regex('" .$_POST['mold_growth']."',

'Absent') .

 filter regex('"

.$_POST['seed_discolor']."', 'Absent') .

 filter regex('" .$_POST['seed_size']."',

'Normal') .

 filter regex('"

.$_POST['seed_shriveling']."', 'Absent') .

 filter regex('" .$_POST['COR']."',

'Normal')}";

$sparql2 = "PREFIX : <http://localhost/soy_test1#>

 select ?Descriptor_Type ?Factors ?Values where {

 {?PlantDescriptor

:hasType ?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors .

?Factors :hasTOC '" .$_POST['TOC']. "' . ?Factors :hasTOC ?Values .}

 union

 {?PlantDescriptor

:hasType ?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors .

?Factors :hasPlantStand '" .$_POST['PS']. "' . ?Factors :hasPlantStand

?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasNormalPrecip '" .$_POST['Precip']. "' . ?Factors :hasNormalPrecip

?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasAbnormalPrecip '" .$_POST['Precip']. "' . ?Factors :hasAbnormalPrecip

?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasNormalTemp '" .$_POST['Temp']. "' . ?Factors :hasNormalTemp ?Values

.}

 union

43

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasAbnormalTemp '" .$_POST['Temp']. "' . ?Factors :hasAbnormalTemp

?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasHail '" .$_POST['Hail']. "' . ?Factors :hasHail ?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasSameCropHist '" .$_POST['Crop_hist']. "' . ?Factors :hasSameCropHist

?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasNotWholeAreaDamaged '" .$_POST['Area_damaged']. "' . ?Factors

:hasNotWholeAreaDamaged ?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasWholeAreaDamaged '" .$_POST['Area_damaged']. "' . ?Factors

:hasWholeAreaDamaged ?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasSeverity '" .$_POST['Severity']. "' . ?Factors :hasSeverity ?Values

.}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasSeedTmt '" .$_POST['Seed_tmt']. "' . ?Factors :hasSeedTmt ?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasGermination '" .$_POST['Germination']. "' . ?Factors :hasGermination

?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasPlantGrowth '" .$_POST['Plant_growth']. "' . ?Factors :hasPlantGrowth

?Values .}

 union

44

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:LeafSpotAbsent '" .$_POST['Leafspots-halo']. "' . ?Factors

:LeafSpotAbsent ?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasLeafSpotsMarg '" .$_POST['Leafspots-margin']. "' . ?Factors

:hasLeafSpotsMarg ?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasLeafSpotsSize '" .$_POST['Leafspot-size']. "' . ?Factors

:hasLeafSpotsSize ?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasLeafShred '" .$_POST['Leaf-Shread']. "' . ?Factors :hasLeafShred

?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasLeafMalf '" .$_POST['Leaf-malf']. "' . ?Factors :hasLeafMalf ?Values

.}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:LeafMildAbsent '" .$_POST['Leaf_mild']. "' . ?Factors :LeafMildAbsent

?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasStemLodging '" .$_POST['lodging']. "' . ?Factors :hasStemLodging

?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:StemCankersAbsent '" .$_POST['stem_cankers']. "' . ?Factors

:StemCankersAbsent ?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasStemCankerLeison '" .$_POST['canker-leison']. "' . ?Factors

:hasStemCankerLeison ?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasStemFruitingBodies '" .$_POST['fruiting_bodies']. "' . ?Factors

:hasStemFruitingBodies ?Values .}

45

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:ExternalDecayAbsent '" .$_POST['external_decay']. "' . ?Factors

:ExternalDecayAbsent ?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasStemMycelium '" .$_POST['mycelium']. "' . ?Factors :hasStemMycelium

?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasStemIntDiscolor '" .$_POST['intdiscolor']. "' . ?Factors

:hasStemIntDiscolor ?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasStemSclerotia '" .$_POST['sclerotia']. "' . ?Factors

:hasStemSclerotia ?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasNormalFruits_Pods '" .$_POST['fruit_pods']. "' . ?Factors

:hasNormalFruits_Pods ?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasDiseasedFruits_Pods '" .$_POST['fruit_spots']. "' . ?Factors

:hasDiseasedFruits_Pods ?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasNormalSeed '" .$_POST['COSeed']. "' . ?Factors :hasNormalSeed ?Values

.}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasMoldGrowth '" .$_POST['mold_growth']. "' . ?Factors :hasMoldGrowth

?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasSeedDiscolor '" .$_POST['seed_discolor']. "' . ?Factors

:hasSeedDiscolor ?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

46

:hasSeedSize '" .$_POST['seed_size']. "' . ?Factors :hasSeedSize ?Values

.}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasSeedShriveling '" .$_POST['seed_shriveling']. "' . ?Factors

:hasSeedShriveling ?Values .}

 union

 {?PlantDescriptor :hasType

?Descriptor_Type . ?PlantDescriptor :hasAttribute ?Factors . ?Factors

:hasNormalRoots '" .$_POST['COR']. "' . ?Factors :hasNormalRoots ?Values

.}

 filter (regex('" .$_POST['TOC']. "',

'July') || regex('" .$_POST['TOC']. "', 'August') || regex('"

.$_POST['TOC']. "', 'October')) .

 filter (regex('" .$_POST['PS']. "',

'Normal') || regex('" .$_POST['PS']. "', 'DNA')) .

 filter (regex('" .$_POST['Precip']. "',

'Normal') || regex('" .$_POST['Precip']."', 'Less_than_normal')) .

 filter (regex('" .$_POST['Temp']. "',

'Normal') || regex('" .$_POST['Temp']."', 'Greater_than_normal')) .

 filter (regex('" .$_POST['Hail']. "',

'Yes') || regex('" .$_POST['Hail']. "', 'No') || regex('"

.$_POST['Hail']. "', 'DNA')) .

 filter (regex('" .$_POST['Crop_hist']. "',

'Same_last_year') || regex('" .$_POST['Crop_hist']. "',

'Same_last_two_years')) .

 filter (regex('" .$_POST['Area_damaged'].

"', 'Upper_areas') || regex('" .$_POST['Area_damaged']. "',

'Whole_field')) .

 filter regex('" .$_POST['Severity']. "',

'Severe') .

 filter (regex('" .$_POST['Seed_tmt']. "',

'Fungicide') || regex('" .$_POST['Seed_tmt']. "', 'None') || regex('"

.$_POST['Seed_tmt']. "', 'DNA')) .

 filter (regex('" .$_POST['Germination'].

"', '90-100') || regex('" .$_POST['Germination']. "', '80-89') ||

regex('" .$_POST['Germination']. "', 'Less_than_80') || regex('"

.$_POST['Germination']. "', 'DNA')) .

 filter regex('" .$_POST['Plant_growth'].

"', 'Abnormal') .

 filter regex('" .$_POST['COL']."',

'Abnormal') .

 filter regex('" .$_POST['Leafspots-

halo']."', 'Absent') .

47

 filter regex('" .$_POST['Leafspots-

margin']."', 'DNA') .

 filter regex('" .$_POST['Leafspot-

size']."', 'DNA') .

 filter regex('" .$_POST['Leaf-Shread']."',

'Absent') .

 filter regex('" .$_POST['Leaf-malf']."',

'Absent') .

 filter regex('" .$_POST['Leaf_mild']."',

'Absent') .

 filter regex('" .$_POST['COS']."',

'Abnormal') .

 filter (regex('" .$_POST['lodging']."',

'Yes') || regex('" .$_POST['lodging']."', 'No')) .

 filter regex('"

.$_POST['stem_cankers']."', 'Absent') .

 filter regex('" .$_POST['canker-

leison']."', 'Tan') .

 filter regex('"

.$_POST['fruiting_bodies']."', 'Absent') .

 filter regex('"

.$_POST['external_decay']."', 'Absent') .

 filter regex('" .$_POST['mycelium']."',

'Absent') .

 filter regex('" .$_POST['intdiscolor']."',

'Black') .

 filter regex('" .$_POST['sclerotia']."',

'Present') .

 filter regex('" .$_POST['fruit_pods']."',

'Normal') .

 filter regex('" .$_POST['fruit_spots']."',

'DNA') .

 filter regex('" .$_POST['COSeed']."',

'Normal') .

 filter regex('" .$_POST['mold_growth']."',

'Absent') .

 filter regex('"

.$_POST['seed_discolor']."', 'Absent') .

 filter regex('" .$_POST['seed_size']."',

'Normal') .

 filter regex('"

.$_POST['seed_shriveling']."', 'Absent') .

 filter regex('" .$_POST['COR']."',

'Normal')}";

48

$result1 = sparql_query($sparql1);

$result2 = sparql_query($sparql2);

if(!$result1 || !$result2) { print sparql_errno() . ": " .

sparql_error(). "\n"; exit; }

$fields1 = sparql_field_array($result1);

$fields2 = sparql_field_array($result2);

$num_of_rows1 = sparql_num_rows($result1);

$num_of_rows2 = sparql_num_rows($result2);

//print "</p>$num_of_rows1</p>";

//print "</p>$num_of_rows2</p>";

//print "<p>Number of rows: ".sparql_num_rows($result)." results.</p>";

if($num_of_rows1 != 0){

 print "<h1 style='text-align:center; color:Green'>Soybean Disease

Analysis</h1>";

 print "
";

 print "<h3 style='text-align:center;'>Disease Detected :</h3><h3

style='text-align:center; color:Red'>Diaporthe_stem_canker</h3>";

 print "<table border=\'1\'; align=\"center\">";

 print "<tr>";

 foreach($fields1 as $field)

 {

 print "<th>$field</th>";

 }

 print "</tr>";

 while($row = sparql_fetch_array($result1))

 {

 print "<tr>";

 foreach($fields1 as $field)

 {

 print "<td>$row[$field]</td>";

 }

 print "</tr>";

 }

 print "</table>";

 }

else if($num_of_rows2 != 0){

 print "<h1 style='text-align:center; color:Green'>Soybean Disease

Analysis</h1>";

49

 print "
";

 print "<h3 style='text-align:center;'>Disease Detected :</h3><h3

style='text-align:center; color:Red'>Charcoal_rot</h3>";

 print "<table border=\'1\'; align=\"center\">";

 print "<tr>";

 foreach($fields2 as $field)

 {

 print "<th>$field</th>";

 }

 print "</tr>";

 while($row = sparql_fetch_array($result2))

 {

 print "<tr>";

 foreach($fields2 as $field)

 {

 print "<td>$row[$field]</td>";

 }

 print "</tr>";

 }

 print "</table>";

 }

else

 print "No match";

 //print $_POST['Leaf-Shread'];

?>

50

Appendix B: Expert Derived Rules for

Soybean Diseases

51

D1:Diaporthe-Stem-Canker

[TOC=’August’^Precip>’Normal’^Stem_cankers=’Above_second_node’^Fruiting_bodies=’Pres

ent’^Fruits_pods=’Normal’^Temp>=’Normal’^Canker_leison_color=’Brown’^Crop_hist=’Same

_last_year’]

D2:Charcoal-Rot

[TOC=’July…August’^Precip<=’Normal’^Temp>=’Normal’^Plant_Growth=’Abnormal’^COL

=’Abnormal’^COS=’Abnormal’^Scelorotia=’Present’^Roots=’Rotted’^IntDiscolor=’Black’^Are

a_damaged=’Upper_areas’^Severity=’Severe’^Seed_size>’Normal’^Crop_hist=’Same_last_two

_years’]

52

Appendix C: Data Sets Used for

Disease Diagnosis

53

1. Data Set for D1: Diaporthe-stem-canker

 Data set 1: (October, Normal, Greater_than_normal, Normal, Yes,

Same_last_year, Low_areas, Potentially_severe, None, 90-100, Abnormal,

Abnormal, Absent, DNA, DNA, Absent, Absent, Absent, Abnormal, No,

Above_second_node, Brown, Present, Firm_and_dry, Absent, None, Absent,

Normal, DNA, Normal, Absent, Absent, Normal, Absent, Normal)

 Data set 2: (August, Normal, Greater_than_normal, Normal, Yes,

Same_last_two_years, Scattered, Severe, Fungicide, 80-89, Abnormal, Abnormal,

Present, DNA, DNA, Absent, Absent, Absent, Abnormal, Yes,

Above_second_node, Brown, Present, Firm_and_dry, Absent, None, Absent,

Normal, DNA, Normal, Absent, Absent, Normal, Absent, Normal)

 Data set 3: (July, Normal, Greater_than_normal, Normal, Yes, Same_last_year,

Scattered, Severe, Fungicide, Less_than_80, Abnormal, Abnormal, Absent, DNA,

DNA, Absent, Absent, Absent, Abnormal, Yes, Above_second_node, DNA,

Present, Firm_and_dry, Absent, None, Absent, Normal, DNA, Normal, Absent,

Absent, Normal, Absent, Normal)

2. Data Set for D2: Charcoal_rot

 Data set 1: (October, Normal, Less_than_normal, Greater_than_normal, Yes,

Same_last_year, Whole_field, Severe, Fungicide, 90-100, Abnormal, Abnormal,

Absent, DNA, DNA, Absent, Absent, Absent, Abnormal, Yes, Absent, Tan,

Absent, Absent, Absent, Black, Present, Normal, DNA, Normal, Absent, Absent,

Normal, Absent, Normal)

 Data set 2: (August, Normal, Less_than_normal, Normal, No, Same_last_year,

Whole_field, Severe, Fungicide, 80-89, Abnormal, Abnormal, Absent, DNA,

DNA, Absent, Absent, Absent, Abnormal, No, Absent, Tan, Absent, Absent,

Absent, Black, Present, Normal, DNA, Normal, Absent, Absent, Normal, Absent,

Normal)

 Data set 3: (July, Normal, Less_than_normal, Normal, Yes, Same_last_year,

Upper_areas, Severe, None, 90-100, Abnormal, Abnormal, Absent, DNA, DNA,

Absent, Absent, Absent, Abnormal, Yes, Absent, Tan, Absent, Absent, Absent,

Black, Present, Normal, DNA, Normal, Absent, Absent, Normal, Absent, Normal)

54

References:

1. R.S.Michalski, R.L.Chilauski, International Journal of Policy Analysis and Information

Systems, Vol. 4, No. 2, 1980, “Learning by being told and learning from examples:

An experimental comparison of the two methods of knowledge acquisition”

2. Kamran Munir, Mohammed Odeh, Peter Bloodsworth, and Richard McClatchey,

Center for Complex Cooperative Systems (CCCS), University of the West England

(UWE), October 23, 2009 “Using Assertion Capabilities of an OWL-based

Ontology for Query Formulation”

3. Hai Dong, RMIT University, Farookh Khadir Hussain, University of Technology,

Sydney, Elizabeth Chang, Curtin University, Conference Paper, January 2007,

“Application of Protégé and SPARQL in the Field of Project Knowledge

Management”

4. Timea Bagosi, Diego Calvanese, Sarah Komla-Ebri, Davide Lanti, Martin Rezk,

Mindaugas Slusnys, Guohui Xiao, Free University of Bozen-Bolzano, Bolzano, Italy,

Joseph Hardi, Obidea Technology, Jakarta, Indonesia, Mariano, Rodriguez-Muro, IBM

T.J. Watson Research Center, NY, USA, “The Ontop Framework for Ontology

Based Data Access”

5. Diego Calvanese, Benjamin Cogrel, Sarah Komla-Ebri, Davide Lanti, Martin Rezk,

Mindaugas Slusnys, Guohui Xiao, Free University of Bozen-Bolzano, Bolzano, Italy,

Joseph Hardi, Obidea Technology, Jakarta, Indonesia, Mariano, Rodriguez-Muro, IBM

T.J. Watson Research Center, NY, USA, Roman Kontchakov, Brickbeck, University

of London, “Ontop: Answering SPARQL Queries over Relational Databases”

6. https://www.w3.org/standards/semanticweb/ Last visited: 04-04-2017

7. https://www.w3.org/TR/owl-features/ Last visited: 02-04-2017

8. http://www.h2database.com/html/tutorial.html Last visited: 17-03-2017

9. https://protegewiki.stanford.edu/wiki/Protege4Pizzas10Minutes Last visited: 23-03-

2017

10. https://www.w3.org/TR/sparql11-query/ Last visited: 28-03-2017

11. https://github.com/ontop/ontop/wiki/ontopProMappingsTab Last visited: 12-03-2017

12. https://github.com/ontop/ontop/wiki/Easy-Tutorial:-Using-Ontop-from-Protege Last

visited: 15-03-2017

13. https://github.com/cgutteridge/PHP-SPARQL-Lib/blob/master/sparqllib.php Last

visited: 24-03-2017

14. https://stackoverflow.com Last visited: 30-03-2017

https://www.w3.org/standards/semanticweb/
https://www.w3.org/TR/owl-features/
http://www.h2database.com/html/tutorial.html
https://protegewiki.stanford.edu/wiki/Protege4Pizzas10Minutes
https://www.w3.org/TR/sparql11-query/
https://github.com/ontop/ontop/wiki/ontopProMappingsTab
https://github.com/ontop/ontop/wiki/Easy-Tutorial:-Using-Ontop-from-Protege
https://github.com/cgutteridge/PHP-SPARQL-Lib/blob/master/sparqllib.php
https://stackoverflow.com/

