
1

EAST WEST UNIVERSITY

 Project Report

Project Title: Socify-A Web Based social Networking system

Prepared by

Name: Junan Chakma

ID: 2009-3-60-009

Supervised by

Dr. Taskeed Jabid

Assistant Professor

Department of Computer Science & Engineering

East West university

September 16, 2015

2

 Chapter 1

 Introduction

1 Introduction

Socify is a social networking web application. This application has mainly three section, user section

and admin section. In user section a user can login/registration, follow other user, see his/her

followers,see his/her followed users , see other users profile,post tweet ,delete tweets, post picture,

update own profile, find out other users. An admin can do all the things that a user can do as well as

admin can delete any other user. If any user deleted by admin, all of his/her information(tweets,

pictures, email, name) will be deleted and updated all users followers/followings list. There are also

many features in this system such as email verification, forgot password, login with remember me

check box, hashed password, automated testing, strong security.

1.2 Motivation

Now days web application is getting more popular and powerful. Most of the popular desktop software

like Photoshop, MS Office has web version now. Unlike desktop application, web application can

access from any part of the world by using Internet and it is also platform independent that means cross

platform - apps can be easily ported to virtually any platform with a web browser. There are many

advantages of web application over desktop application such as desktop applications needs to be

updated per desktop,web applications are updated once at the server, The application will run on the

browser regardless the platform, no installation required, accessible anywhere.

So these are the key reasons of my motivation to build a web based system.

1.3 Technology Stack

I used Ruby programming language and it's framework Rails to build Socify web application. For

database system, I used Sqlite. For client side, I used html, css , javascript, jquery, bootstrap. I also

3

used Rubymine IDE and Ubuntu operating system.

Programming languages: Ruby, Javascript

Database system: Sqlite

Frameworks: Rails, Jquery, Bootstrap

Markup languages: Html, Css

IDE/Editor: Rubymine, Sublime text

Operating system: Ubuntu

1.4 Project Requirement

There are many tools I had to install to build this systems.

● Ruby interpreter

● Rails

● Sqlite

● Jquery

● Bootstrap

● Rubymine

● Subllime text

● Ubuntu

4

Chapter 2

Ruby and Rails Platform

2.1 Ruby:

Ruby is a dynamic, object-oriented, open source programming language with a focus on simplicity and

productivity. It has an elegant syntax that is natural to read and easy to write. It was designed and

developed in the mid-1990s by Yukihiro "Matz" Matsumoto, a computer scientist in Japan.

Early concept

Ruby was conceived on February 24, 1993. In a 1999 post to the ruby-talk mailing list, Ruby author

Yukihiro Matsumoto describes some of his early ideas about the language:

“I was talking with my colleague about the possibility of an object-oriented scripting language. I knew

Perl (Perl4, not Perl5), but I didn't like it really, because it had the smell of a toy language (it still has).

The object-oriented language seemed very promising. I knew Python then. But I didn't like it, because I

didn't think it was a true object-oriented language — OO features appeared to be add-on to the

language. As a language maniac and OO fan for 15 years, I really wanted a genuine object-oriented,

easy-to-use scripting language. I looked for but couldn't find one. So I decided to make it.”

Matsumoto describes the design of Ruby as being like a simple Lisp language at its core, with an object

system like that of Smalltalk, blocks inspired by higher-order functions, and practical utility like that of

Perl.

The name "Ruby

The name "Ruby" originated during an online chat session between Matsumoto and Keiju Ishitsuka on

February 24, 1993, before any code had been written for the language. Initially two names were

5

proposed: "Coral" and "Ruby". Matsumoto chose the latter in a later e-mail to Ishitsuka. Matsumoto

later noted a factor in choosing the name "Ruby" – it was the birthstone of one of his colleagues.

First publication

The first public release of Ruby 0.95 was announced on Japanese domestic newsgroups on December

21, 1995. Subsequently three more versions of Ruby were released in two days. The release coincided

with the launch of the Japanese-language ruby-list mailing list, which was the first mailing list for the

new language.

Already present at this stage of development were many of the features familiar in later releases of

Ruby, including object-oriented design, classes with inheritance, mixins,iterators, closures, exception

handling and garbage collection.

2.2 Rails

Rails, is a web application framework written in Ruby under MIT License. Rails is a model–view–

controller (MVC) framework, providing default structures for a database, a web service, and web

pages. It encourages and facilitates the use of web standards such as JSON or XML for data transfer,

and HTML, CSS and JavaScript for display and user interfacing. In addition to MVC, Rails emphasizes

the use of other well-known software engineering patterns and paradigms, including convention over

configuration (CoC), don't repeat yourself (DRY), and the active record pattern.

History

David Heinemeier Hansson, a Danish programmer created Ruby on Rails from his work on the project

management tool Basecamp at the web application company also called Basecamp. Hansson first

released Rails as open source in July 2004, but did not share commit rights to the project until February

2005.In August 2006, the framework reached a milestone when Apple announced that it would ship

Ruby on Rails with Mac OS X v10.5 "Leopard", which was released in October 2007.

Rails version 2.3 was released on March 15, 2009 with major new developments in templates, engines,

Rack and nested model forms. Templates enable the developer to generate a skeleton application with

custom gems and configurations. Engines give developers the ability to reuse application pieces

complete with routes, view paths and models. The Rack web server interface and Metal allow one to

write optimized pieces of code that route around Action Controller.

6

Rails 3.1 was released on August 31, 2011, featuring Reversible Database Migrations, Asset Pipeline,

Streaming, jQuery as default JavaScript library and newly introduced CoffeeScript and Sass into the

stack.

Rails 3.2 was released on January 20, 2012 with a faster development mode and routing engine (also

known as Journey engine), Automatic Query Explain and Tagged Logging.Rails 3.2.x is the last

version that supports Ruby 1.8.7. Rails 3.2.12 supports Ruby 2.0.

Rails 4.0 was released on June 25, 2013, introducing Russian Doll Caching, Turbolinks, Live

Streaming as well as making Active Resource, Active Record Observer and other components optional

by splitting them as gems.

Rails 4.1 was released on April 8, 2014, introducing Spring, Variants, Enums, Mailer previews, and

secrets.yml.

Rails 4.2 was released on December 19, 2014, introducing Active Job, asynchronous emails, Adequate

Record, Web Console, and foreign keys.

Chapter 3

Features

7

3.1 Users In this web application, there are two users. 1) Normal user 2) Admin

Normal user:

● An user need to register befor login to the system.

● After successful registration he/she can follow other user.

● He/she can also unfollow the user.

● He/she can post any tweet

● He/she can delete own tweet

● He/she can post any photo.

● He/she can edit own profiles

● H

e/

sh

e

ca

n

vi

sit

ot

he

r

us

er

s

pr

of

ile

.

8

Figure 1: Use case Diagram for user

Admin:

● An admin does not need to register before login to the system.

● An admin can delete any user.

● After successful registration he/she can follow other user.

● He/she can also unfollow the user.

● He/she can post any tweet

● He/she can delete own tweet

● He/she can post any photo.

● He/she can edit own profiles

● He/she can visit other users profile.

9

Figure 2: Use case diagram for admin

Starting page: My starting page of my application has six navigation link.

● Sign up now!

● Home

● Log in

● Socify

● About

● Contact

10

Figure:

3

Startin

g page

of

Socify

app

3.2 Login System: To login Socify app, we have to login with correct credentials. That means it needs

both, an correct email and correct password corresponding to the email id. Both login field must be

filled and email address has to be a valid email otherwise it will show errors with the explanation about

the error.

Figure

 4: Login page of Socify app

11

Figure

5:

Login

validati

on of

Socify

App

Successful Login: After successful login, it will go through the user profile page. In user profile

page, user profile will show in the upper left side. Down the profile picture it show the following and

followers numbers.

Figure

5:

Users

profile

page

In the

right side

it shows

all the

tweets of the users he/she posted. There is a delete button, user can delete any post by clicking it. It will

also show picture the user posted and shows the time when the post posted. From here, I can go to the

home page by clicking to the Home navigation link.

12

Figure

6:

Home

page

3.3

Home Page: Every website has a home page and Socify has so. In this Home page, there is user's

profile in the upper left side and there is a text area box for writing tweets down to this profile. This

text area box only allow maximal 140 and minimum 1 characters. If I put more than 140 characters in

it, then post button will be disabled automatically. There is a helper text bellow the text area box which

dynamically shows how many characters are renaming. This text will be red color

when I

put more

than 140

character

s on it.

Here we

can post

any photo

by

uploading

.

13

Figure 6: Textarea form validation

In the right side, it will show the tweets of following users and user himself tweets. We can go to user

navigation link to see all the successfully registered user. If we logged in by admin login credentials,

we can delete any users. If we delete any user by using admin power, all of the tweets of the deleted

user will be delete automatically.

Figure

7 : All

users

page

3.4

Followin

g and

Unfollow

ing: In all

users page, I can see many users in the list. I can go their profile page by clicking on their profile

picture or name. Suppose I want to go lenin hasda's profile. I can see his profile after clicking on his

profile

14

Figure

8:

Lenin

Hasda

Profile

In Lenin

Hasda

profile, I

see his

picture,

name, tweets. I also see his following and followers numbers. Here he followed one person and being

followed by one person. Interestingly there is a unfollow button in his profile, this is because I already

followed him. That means his one followers is me. I can unfollow him by clicking unfolow button. See

the figure 9 where there is a follow button and Now he has zero followers because I ve unfollwed him.

Figure

9:

Lenin

hasda

profile

after

hitting

unfollw

button

15

3.5 Update profile: I can update my own profile. To do this I have to go to account drop down box

and have to clicking in setting link. Then I will get a editing page where I can change my name, email

address, password and profile picture.

Fig

ure

10:

Upd

ate

prof

ile

3.6

Use

r

Sig

n

up:

Ever

y

user

has

to register before login to the site. To sign up, a user need to put his/her name, valid email address and

minimum 6 charactered password. Every field must be filled currently otherwise it will show some

errors messages back to the user and the sign up for can't be empty. After putting these things

currently, he/she need to click the create button to successfully sign up.

16

Figure

11:

Sign

up

Form

Figure

12:

Sign

up

form

validati

on

3.7

Email

Verifica

tion:

Socify app has email verification features. Without email verification no one can log in into

this system. This is a very necessary feature for good security. If this feature ware not exist,

every user can register with fake or others email address. In noways most website has email

verification feature. In Socify app, after successfully sign up we get a message “Please check

your email to activate your account.”

17

Figure

13:

Email

verifica

tion

messag

e

Figure

14:

Verifica

tion

messag

e link in

email

Figure

15:

After

clicking

verifica

tion

link

After successfully sign up, we will get a email message with verification link. After clicking

this link we see that our account is activated and logged in.

18

3.8 Forgot password/reset password: We may forgot our password and we need to recover

it. But how we do it? There is a feature called password reseting. In Socify app there is a link

named “forgot password”.

Figure

16:

Forgot

passwo

rd

Figure

17:

Forgot

passwo

rd page

I have to put my email address to this form and click submit button. Then I will get a page that

saying “Email sent with password reset instructions”. After that I have to check my email address. In

my email address I will see a email has come with password resetting link. After clicking that

link I will get a form page for password resetting and I can change my password.

19

Figure

17:

Passwo

rd

resettin

g

messag

e

Figure

18:

Passwor

d reset

Email

Figure

18

Passwo

rd

resettin

g form

20

Chapter 4

Design and Implementation

4.1 Database Model: In my project database, I have three models(table) one for user (Users),

two for tweets (Microposts), three for keep tracking following/followrs(Relationships). In

users table, there are mainly 14 columns , in microposts table there are 8 columns, in

relationships table there are 5 columns. Users table linked others two tables using a foreign key

and I can easily access others table information from user table.

Figure

19:

Model

Depen

dency

Diagra

m

4.2 User table validation: In User table, email, name, password must present. I validate

email with standard email pattern by using regular expression. Maximum length of user name

is 50 characters. Password length will be minimum 6 characters. If there is a uppercase email,

21

the email will be saved automatically in lowercase in database.

Figure

19:

User

model

4.3

Microp

ost(twe

ets)

table

validati

on: In

micropo

st table,

content

and

user_id

must

exist before post any tweet. The tweet maximum length is 140 characters. If I put 140+

characters the in the tweet form the submit button will be disabled.

Figure

20:

Micropo

st Model

4.4 Relationship model: This model(table) used for keep tracking following and followers

and it is associated to user

table.

22

Figure 21: relationship model

4.5 Controller: Controller do the work of parsing user requests, data submissions, cookies, sessions

and the “browser stuff”. A controller is the link between a user and the system. It provides the user with

input by arranging for relevant views to present themselves in appropriate places on the screen. It

provides means for user output by presenting the user with menus or other means of giving commands

and data. The controller receives such user output, translates it into the appropriate messages and pass

these messages on to one or more of the views.

4.6 User controller: My user controller is responsible for create new user, delete user, update user

information, ensure correct user, ensure user is admin, show following/followers users and sharing

status.

Figure

22: User

controlle

r

4.7

Micropo

st

controlle

23

r: Micropost controller is responsible for creating status and destroy it. It also ensure the correct user

and it

accept

content

and

picture

attribute.

Figure

23:

Microp

ost

controll

er

4.8 Relationship controller: Relationship controller responsible for keep tracking for following and

followers users.

Figure 24 Relationship Controller

24

4.9 Session controller: Session controller is responsible for authenticating login user and it used

permanent cookies for permanent cookies.

Figure

24:

Session

Control

ler

C

h

apter 5

Conclusion, Limitation and

Future Work

25

Conclusion: Now days social networking web site are going very very popular. Social networking

site changed our life style, our perception, communication system. Web-based social networking

services make it possible to connect people who share interests and activities across political,

economic, and geographic borders. In my Socify app, anyone can easily use it because it is very simple

to use. After registration, a user can follow any user he/she like and gets their updates in his news feed.

Limitation: There are some limitation in my application. There are given bellow

● There is no real time chatting system.

● There is no option for comment

● There is no messaging option.

In my future work on this project, I will work on this area and hopefully I can implement these feature

very efficiently.

References:

1. http://stackoverflow.com/

2. https://gorails.com/

3. http://railscasts.com/

4. https://rubymonk.com/

5. http://www.sitepoint.com/

6. https://www.wikipedia.org/

7. http://www.w3schools.com/

8. http:///www.youtube.com/

http://stackoverflow.com/
https://gorails.com/
http://railscasts.com/
https://rubymonk.com/
https://www.wikipedia.org/
http://www.w3schools.com/

26

APPENDIX

User controller:

class UsersController < ApplicationController
 before_action :logged_in_user, only: [:index, :edit, :update, :destroy,
:following, :followers]
 before_action :correct_user, only: [:edit, :update]
 before_action :admin_user, only: :destroy
 def index
 @users=User.paginate(page: params[:page])
 end
 def new
 @user=User.new
 end
 def create
 @user = User.new(user_params)
 if @user.save
 @user.send_activation_email
 flash[:info] = "Please check your email to activate your account."
 redirect_to root_url
 else
 render 'new'
 end

27

 end
 def edit
 @user = User.find(params[:id])
 end
 def update
 @user = User.find(params[:id])
 if @user.update_attributes(user_params)
 flash[:success] = "Profile updated"
 redirect_to @user
 else
 render 'edit'
 end
 end
 def show
 @user = User.find(params[:id])
 @microposts = @user.microposts.paginate(:page => params[:page], :per_page =>
20)
 end
 def destroy
 User.find(params[:id]).destroy
 flash[:success] = "User deleted"
 redirect_to users_url
 end
 def following
 @title = "Following"
 @user = User.find(params[:id])
 @users = @user.following.paginate(page: params[:page])
 render 'show_follow'
 end
 def followers
 @title = "Followers"
 @user = User.find(params[:id])
 @users = @user.followers.paginate(page: params[:page])
 render 'show_follow'
 end
 def retweet
 @micropost = current_user.microposts.create(content: params[:content],
retweeted: params[:retweeted], orginal_id: params[:orginal_id])
 flash[:success] = "Retweeted"
 redirect_to root_path
 end
 private
 def user_params
 params.require(:user).permit(:name, :email, :password,
 :password_confirmation, :picture)
 end
 # Confirms the correct user.
 def correct_user
 @user = User.find(params[:id])
 redirect_to(root_url) unless current_user?(@user)
 end
 # Confirms an admin user.
 def admin_user
 redirect_to(root_url) unless current_user.admin?
 end

28

end

Micropost Controller

class MicropostsController < ApplicationController
 before_action :logged_in_user, only: [:create, :destroy]
 before_action :correct_user, only: :destroy
 def create
 @micropost = current_user.microposts.build(micropost_params)
 if @micropost.save
 flash[:success] = "Tweet created!"
 redirect_to root_url
 else
 @feed_items = []
 render 'static_pages/home'
 end
 end
 def destroy
 @micropost.destroy
 flash[:success] = "Tweet deleted"
 redirect_to request.referrer || root_url
 end
 private
 def micropost_params
 params.require(:micropost).permit(:content, :retweeted, :orginal_id
,:picture)
 end
 def correct_user
 @micropost = current_user.microposts.find_by(id: params[:id])
 redirect_to root_url if @micropost.nil?
 end
end

Session Controller:

class SessionsController < ApplicationController
 def new
 end
 def create
 user = User.find_by(email: params[:session][:email].downcase)
 if user && user.authenticate(params[:session][:password])
 if user.activated?
 log_in user
 params[:session][:remember_me] == '1' ? remember(user) : forget(user)
 redirect_back_or root_path
 else
 message = "Account not activated. "
 message += "Check your email for the activation link."
 flash[:warning] = message
 redirect_to root_url
 end
 else
 flash.now[:danger] = 'Invalid email/password combination'
 render 'new'
 end

29

 end
 def destroy
 log_out if logged_in?
 redirect_to root_path
 end
end

password reset Controller:

class PasswordResetsController < ApplicationController
 before_action :get_user, only: [:edit, :update]
 before_action :valid_user, only: [:edit, :update]
 before_action :check_expiration, only: [:edit, :update]
 def new
 end
 def create
 @user = User.find_by(email: params[:password_reset][:email].downcase)
 if @user
 @user.create_reset_digest
 @user.send_password_reset_email
 flash[:info] = "Email sent with password reset instructions"
 redirect_to root_url
 else
 flash.now[:danger] = "Email address not found"
 render 'new'
 end
 end
 def edit
 end
 def update
 if params[:user][:password].empty?
 @user.errors.add(:password, "can't be empty")
 render 'edit'
 elsif @user.update_attributes(user_params)
 log_in @user
 flash[:success] = "Password has been reset."
 redirect_to @user
 else
 render 'edit'
 end
 end
 private
 def user_params
 params.require(:user).permit(:password, :password_confirmation)
 end
 def get_user
 @user = User.find_by(email: params[:email])
 end
 # Confirms a valid user.
 def valid_user
 unless (@user && @user.activated? &&
 @user.authenticated?(:reset, params[:id]))
 redirect_to root_url
 end
 end

30

 # Checks expiration of reset token.
 def check_expiration
 if @user.password_reset_expired?
 flash[:danger] = "Password reset has expired."
 redirect_to new_password_reset_url
 end
 end
end

Account activation Controller:

class AccountActivationsController < ApplicationController

 def edit
 user = User.find_by(email: params[:email])
 if user && !user.activated? && user.authenticated?(:activation, params[:id])
 user.activate
 log_in user
 flash[:success] = "Account activated!"
 redirect_to user
 else
 flash[:danger] = "Invalid activation link"
 redirect_to root_url
 end
 end
end

Relationship controller:

class RelationshipsController < ApplicationController

 before_action :logged_in_user
 def create
 user = User.find(params[:followed_id])
 current_user.follow(user)
 redirect_to user
 end
 def destroy
 user = Relationship.find(params[:id]).followed
 current_user.unfollow(user)
 redirect_to user
 end
end

Session helper:

module SessionsHelper

 # Logs in the given user.
 def log_in(user)
 session[:user_id] = user.id

31

 end
 # Remembers a user in a persistent session.
 def remember(user)
 user.remember
 cookies.permanent.signed[:user_id] = user.id
 cookies.permanent[:remember_token] = user.remember_token
 end
 # Returns the user corresponding to the remember token cookie.
 def current_user
 if (user_id = session[:user_id])
 @current_user ||= User.find_by(id: user_id)
 elsif (user_id = cookies.signed[:user_id])
 user = User.find_by(id: user_id)
 if user && user.authenticated?(:remember, cookies[:remember_token])
 log_in user
 @current_user = user
 end
 end
 end
 # Returns true if the given user is the current user.
 def current_user?(user)
 user == current_user
 end
 # Returns true if the user is logged in, false otherwise.
 def logged_in?
 !current_user.nil?
 end
 # Forgets a persistent session.
 def forget(user)
 user.forget
 cookies.delete(:user_id)
 cookies.delete(:remember_token)
 end
 # Logs out the current user.
 def log_out
 forget(current_user)
 session.delete(:user_id)
 @current_user = nil
 end
 # Redirects to stored location (or to the default).
 def redirect_back_or(default)
 redirect_to(session[:forwarding_url] || default)
 session.delete(:forwarding_url)
 end
 # Stores the URL trying to be accessed.
 def store_location
 session[:forwarding_url] = request.url if request.get?
 end
end

Model

32

User Model:

class User < ActiveRecord::Base
 attr_accessor :remember_token, :activation_token, :reset_token
 before_save :downcase_email
 before_create :create_activation_digest
 mount_uploader :picture, PictureUploader
 has_many :microposts, dependent: :destroy
 has_many :active_relationships, class_name: "Relationship",
 foreign_key: "follower_id", dependent: :destroy
 has_many :following, through: :active_relationships, source: :followed
 has_many :passive_relationships, class_name: "Relationship",
 foreign_key: "followed_id",
 dependent: :destroy
 has_many :following, through: :active_relationships, source: :followed
 has_many :followers, through: :passive_relationships, source: :follower
 validates :name, presence: true, length: {maximum: 50}
 VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-]+(\.[a-z\d\-]+)*\.[a-z]+\z/i
 validates :email, presence: true, length: {maximum: 255},
 format: {with: VALID_EMAIL_REGEX}, uniqueness: {case_sensitive: false}
 has_secure_password
 validates :password, presence: true, length: {minimum: 6}, allow_nil: true
 # Returns the hash digest of the given string.
 def self.digest(string)
 cost = ActiveModel::SecurePassword.min_cost ? BCrypt::Engine::MIN_COST :
 BCrypt::Engine.cost
 BCrypt::Password.create(string, cost: cost)
 end
 # Returns a random token.
 def User.new_token
 SecureRandom.urlsafe_base64
 end
 # Remembers a user in the database for use in persistent sessions.
 def remember
 self.remember_token = User.new_token
 update_attribute(:remember_digest, User.digest(remember_token))
 end
 # Returns true if the given token matches the digest.
 def authenticated?(attribute, token)
 digest = send("#{attribute}_digest")
 return false if digest.nil?
 BCrypt::Password.new(digest).is_password?(token)
 end
 # Forgets a user.
 def forget
 update_attribute(:remember_digest, nil)
 end
 # Activates an account.
 def activate
 update_attribute(:activated, true)
 update_attribute(:activated_at, Time.zone.now)
 end
 # Sends activation email.
 def send_activation_email
 UserMailer.account_activation(self).deliver_now

33

 end
 # Sets the password reset attributes.
 def create_reset_digest
 self.reset_token = User.new_token
 update_attribute(:reset_digest, User.digest(reset_token))
 update_attribute(:reset_sent_at, Time.zone.now)
 end
 # Sends password reset email.
 def send_password_reset_email
 UserMailer.password_reset(self).deliver_now
 end
 def password_reset_expired?
 reset_sent_at < 2.hours.ago
 end
 def feed
 Micropost.where("user_id IN (?) OR user_id = ?", following_ids, id)
 end
 # Follow a user.
 def follow(other_user)
 active_relationships.create(followed_id: other_user.id)
 end
 # Unfollow a user.
 def unfollow(other_user)
 active_relationships.find_by(followed_id: other_user.id).destroy
 end
 # Returns true if the current user is following the other user.
 def following?(other_user)
 following.include?(other_user)
 end
 private
 # Converts email to all lower-case.
 def downcase_email
 self.email = email.downcase
 end
 # Creates and assigns the activation token and digest.
 def create_activation_digest
 self.activation_token = User.new_token
 self.activation_digest = User.digest(activation_token)
 end
end

Micropost model:

class Micropost < ActiveRecord::Base
 belongs_to :user
 default_scope -> { order(created_at: :desc) }
 mount_uploader :picture, PictureUploader
 validates :user_id, presence: true
 validates :content, presence: true, length: { maximum: 140 }
end

Relationship model:

class Relationship < ActiveRecord::Base
 belongs_to :follower, class_name: "User"

34

 belongs_to :followed, class_name: "User"
 validates :follower_id, presence: true
 validates :followed_id, presence: true
end

Views

application:

<!DOCTYPE html>

<html>
<head>
 <title><%= full_title(yield(:title)) %></title>
 <%= stylesheet_link_tag 'application', media: 'all',
 'data-turbolinks-track' => true %>
 <%= javascript_include_tag 'application', 'data-turbolinks-track' => true %>
 <%= csrf_meta_tags %>
 <%= render 'layouts/shim' %>
</head>
<body>
<%= render 'layouts/headers' %>
<div class="container">
 <% flash.each do |message_type, message| %>
 <%= content_tag(:div, message, class: "alert alert-#{message_type}") %>
 <% end %>
 <%= yield %>
 <%= render 'layouts/footer' %>
 <%= debug params if Rails.env.test? %>
</div>
</body>
</html>

header:

<header class="navbar navbar-fixed-top navbar-inverse">

 <div class="container">
 <%= link_to "Socify", root_path, id: "logo" %>
 <nav>
 <ul class="nav navbar-nav navbar-right">
 <%= link_to "Home", root_path %>
 <% if logged_in? %>
 <%= link_to "Users", users_path %>
 <li class="dropdown">

 Account <b class="caret">

35

 <ul class="dropdown-menu">
 <%= link_to "Profile", current_user %>
 <%= link_to "Settings", edit_user_path(current_user) %>
 <li class="divider">

 <%= link_to "Log out", logout_path, method: "delete" %>

 <% else %>
 <%= link_to "Log in", login_path %>
 <% end %>

 </nav>
 </div>
</header>

footer:

<footer class="footer">

 <small>
 The <%= link_to 'Socify App', root_path %>
 by Junan Chakma
 </small>
</footer>

Home:

<% if logged_in? %>

 <div class="row">
 <aside class="col-md-4">
 <section class="user_info">
 <%= render 'shared/user_info' %>
 </section>
 <section class="stats">
 <%= render 'shared/stats' %>
 </section>
 <section class="micropost_form">
 <%= render 'shared/micropost_form' %>
 </section>
 </aside>
 <div class="col-md-8">
 <h3>Status Feed</h3>
 <%= render 'shared/feed' %>
 </div>
 </div>
<% else %>
 <div class="center jumbotron">
 <h1>Welcome to the Socify</h1>

36

 <h2>
 Connect with friends and the
 world around you
 </h2>
 <%= link_to "Sign up now!", signup_path, class: "btn btn-lg btn-primary" %>
 </div>
<% end %>

Micropost:

<% current_user=@user || current_user %>

<li id="micropost-<%= micropost.id %>">
 <% if current_user.picture? %>
 <%= link_to (image_tag((current_user).picture.url, class: "gravatar")),
micropost.user %>
 <%= link_to micropost.user.name, micropost.user
%>
 <% else %>
 <%= link_to (image_tag("default-icon.png", class: "gravatar")),
micropost.user %>
 <%= link_to micropost.user.name, micropost.user
%>
 <% end %>

 <%= micropost.content %>
 <%= image_tag micropost.picture.url, class: "img-height" if
micropost.picture? %>

 Posted <%= time_ago_in_words(micropost.created_at) %> ago.
 <% if current_user?(micropost.user) %>
 <%= link_to "delete", micropost, method: :delete,
 data: {confirm: "You sure?"} %>
 <% end %>

pass reset edit:

<% provide(:title, 'Reset password') %>

<h1>Reset password</h1>
<div class="row">
 <div class="col-md-6 col-md-offset-3">
 <%= form_for(@user, url: password_reset_path(params[:id])) do |f| %>
 <%= render 'shared/error_messages', object: f.object %>
 <%= hidden_field_tag :email, @user.email %>
 <%= f.label :password %>
 <%= f.password_field :password, class: 'form-control' %>
 <%= f.label :password_confirmation, "Confirmation" %>

37

 <%= f.password_field :password_confirmation, class: 'form-control' %>
 <%= f.submit "Update password", class: "btn btn-primary" %>
 <% end %>
 </div>
</div>

password reset new

<% provide(:title, "Forgot password") %>

<h1>Forgot password</h1>
<div class="row">
 <div class="col-md-6 col-md-offset-3">
 <%= form_for(:password_reset, url: password_resets_path) do |f| %>
 <%= f.label :email %>
 <%= f.email_field :email, class: 'form-control' %>
 <%= f.submit "Submit", class: "btn btn-primary" %>
 <% end %>
 </div>
</div>

Session new:

<% provide(:title, "Log in") %>

<h1>Log in</h1>
<div class="row">
 <div class="col-md-6 col-md-offset-3">
 <%= form_for(:session, url: login_path) do |f| %>
 <%= f.label :email %>
 <%= f.email_field :email, class: 'form-control' %>
 <%= f.label :password %>
 <%= link_to "(forgot password)", new_password_reset_path %>
 <%= f.password_field :password, class: 'form-control' %>
 <%= f.label :remember_me, class: "checkbox inline" do %>
 <%= f.check_box :remember_me %>
 Remember me on this computer
 <% end %>
 <%= f.submit "Log in", class: "btn btn-primary" %>
 <% end %>
 <p>New user? <%= link_to "Sign up now!", signup_path %></p>
 </div>
</div>

error messages:

<% if object.errors.any? %>

 <div id="error_explanation">
 <div class="alert alert-danger">
 The form contains <%= pluralize(object.errors.count, "error") %>.
 </div>

38

 <% object.errors.full_messages.each do |msg| %>
 <%= msg %>
 <% end %>

 </div>
<% end %>

feed:

<% if @feed_items.any? %>

 <ol class="microposts">
 <%= render 'shared/feed_items' %>

 <%= will_paginate @feed_items %>
<% end %>

Feed items:

<% user=@user||=current_user %>

<% @feed_items.each do |micropost| %>
 <li id="micropost-<%= micropost.id %>">
 <% if micropost.user.picture? %>
 <%= link_to (image_tag(micropost.user.picture.url, class: "gravatar")),
micropost.user %>
 <%= link_to micropost.user.name, micropost.user
%>
 <% else %>
 <%= link_to (image_tag("default-icon.png", class: "gravatar")),
user_path(micropost.user) %>
 <%= link_to micropost.user.name, micropost.user
%>
 <% end %>
 <% if micropost.retweeted %>

 <% @user=User.find_by(id: micropost.orginal_id) %>
 <%= link_to (image_tag(@user.picture.url, class: "gravatar")), @user %>
 <!--[Retweeted from <%#= @user.name %>]-->
 <%= image_tag(micropost.picture.url, class: "img-height") if
micropost.picture? %>
 <%= micropost.content %>

 <% else %>

 <%= micropost.content %>
 <%= image_tag(micropost.picture.url, class: "img-height") if
micropost.picture? %>

 <% end %>

39

 Posted <%= time_ago_in_words(micropost.created_at) %> ago.
 <% if current_user?(micropost.user) %>
 <%= link_to "delete", micropost, method: :delete,
 data: {confirm: "You sure?"} %>
 <% end %>
 <%= form_for(:user, url: share_path) do |f| %>
 <%= hidden_field_tag :content, micropost.content %>
 <%= hidden_field_tag :retweeted, true %>
 <%= hidden_field_tag :orginal_id, micropost.user.id %>
 <% if !micropost.retweeted and !micropost.picture.url %>
 <%= f.submit "Share", class: "btn btn-link" %>
 <% else %>
 <%= f.submit ".", disabled: true ,class: "btn btn-link" %>
 <% end %>
 <% end %>

<% end %>

Micropost form:

<%= form_for(@micropost, html: {multipart: true}) do |f| %>

 <%= render 'shared/error_messages', object: f.object %>
 <div class="field">
 <%= f.text_area :content, class: "message", placeholder: "Post a status..."
%>
 </div>
 <%= f.submit "Post", class: "btn btn-primary", id: "sub" %>

 <%= f.file_field :picture, accept: 'image/jpeg,image/gif,image/png' %>

<% end %>
<script type="text/javascript">
 $(document).ready(function ($) {
 updateCountdown();
 $('.message').change(updateCountdown);
 $('.message').keyup(updateCountdown);
 });
 function updateCountdown() {
 // 140 is the max message length
 var remaining = 140 - $('.message').val().length;
 $('#sub').removeAttr('disabled');
 $('span.countdown').removeClass('err_red');
 if(remaining<0){
 $('span.countdown').addClass('err_red');
 $('#sub').attr('disabled', 'disabled');
 }
 $('.countdown').text(remaining + ' characters remaining.');
 }
</script>

stats:

40

<% @user ||= current_user %>

<div class="stats">
 <a href="<%= following_user_path(@user) %>">
 <strong id="following" class="stat">
 <%= @user.following.count %>

 following

 <a href="<%= followers_user_path(@user) %>">
 <strong id="followers" class="stat">
 <%= @user.followers.count %>

 followers

</div>

user_info:

<% user=@user||=current_user %>

<% if user.picture? %>
 <h1>
 <%= link_to (image_tag(user.picture.url, class: "gravatar")),
user_path(user) %>
 <%= user.name %>
 </h1>
<% else %>
 <h1>
 <%= link_to (image_tag("default-icon.png",class: "gravatar", alt: 'profile
photo')), user_path(user) %>
 <%= @user.name %>
 </h1>
<% end %>
<%= link_to "view my profile", current_user %>
<%= pluralize(current_user.microposts.count, "Status") %>

follow:

<%= form_for(current_user.active_relationships.build) do |f| %>

 <div><%= hidden_field_tag :followed_id, @user.id %></div>
 <%= f.submit "Follow", class: "btn btn-primary" %>
<% end %>

follow_form:

<% unless current_user?(@user) %>

 <div id="follow_form">
 <% if current_user.following?(@user) %>
 <%= render 'unfollow' %>
 <% else %>

41

 <%= render 'follow' %>
 <% end %>
 </div>
<% end %>

unfollow:

<%= form_for(current_user.active_relationships.find_by(followed_id: @user.id),

 html: { method: :delete }) do |f| %>
 <%= f.submit "Unfollow", class: "btn btn-primary" %>
<% end %>

user:

<li class="index-img">

 <% if user.picture? %>
 <%= link_to (image_tag(user.picture.url, class: "gravatar")),
user_path(user) %>
 <%= link_to user.name, user %>
 <% else %>
 <%= link_to (image_tag("default-icon.png", class: "gravatar")),
user_path(user) %>
 <%= link_to user.name, user %>
 <% end %>
 <% if current_user.admin? && !current_user?(user) %>
 | <%= link_to "delete", user, method: :delete,
 data: {confirm: "You sure?"} %>
 <% end %>

edit:

<% provide(:title, "Edit user") %>

<h1>Update your profile</h1>
<div class="row">
 <div class="col-md-6 col-md-offset-3">
 <%= form_for(@user, html: {multipart: true}) do |f| %>
 <%= render 'shared/error_messages', object: f.object %>
 <%= f.label :name %>
 <%= f.text_field :name, class: 'form-control' %>
 <%= f.label :email %>
 <%= f.email_field :email, class: 'form-control' %>
 <%= f.label :password %>
 <%= f.password_field :password, class: 'form-control' %>
 <%= f.label :password_confirmation, "Confirmation" %>
 <%= f.password_field :password_confirmation, class: 'form-control' %>

 <strong class="up_pic">Upload Picture
 <%= f.file_field :picture %>

 <%= f.submit "Save changes", class: "btn btn-primary" %>

42

 <% end %>
 </div>
</div>

index:

<% provide(:title, 'All users') %>

<h1>All users</h1>
<%= will_paginate %>
<ul class="users">
 <%= render @users %>

<%= will_paginate %>

new:

<% provide(:title, 'Sign up') %>

<h1>Sign up</h1>
<div class="row">
 <div class="col-md-6 col-md-offset-3">
 <%= form_for(@user) do |f| %>
 <%= render 'shared/error_messages', object: f.object %>
 <%= f.label :name %>
 <%= f.text_field :name, class: 'form-control' %>
 <%= f.label :email %>
 <%= f.email_field :email, class: 'form-control' %>
 <%= f.label :password %>
 <%= f.password_field :password, class: 'form-control' %>
 <%= f.label :password_confirmation, "Confirmation" %>
 <%= f.password_field :password_confirmation, class: 'form-control' %>
 <%= f.submit "Create my account", class: "btn btn-primary" %>
 <% end %>
 </div>
</div>

show:

<% provide(:title, @user.name) %>

<div class="row">
 <aside class="col-md-4">
 <section class="user_info">
 <% if @user.picture? %>
 <h1>
 <%= link_to (image_tag(@user.picture.url, class: "gravatar")),user_path
%>
 <%= link_to @user.name, @user %>
 </h1>
 <% else %>
 <h1>
 <%= link_to (image_tag("default-icon.png", class: "gravatar")), user_path
%>

43

 <%= link_to @user.name, @user %>
 </h1>
 <% end %>
 </section>
 <section class="stats">
 <%= render 'shared/stats' %>
 </section>
 </aside>
 <div class="col-md-8">
 <%= render 'follow_form' if logged_in? %>
 <% if @user.microposts.any? %>
 <h3>Statuses (<%= @user.microposts.count %>)</h3>
 <ol class="microposts">
 <%= render @microposts %>

 <%= will_paginate @microposts %>
 <% end %>
 </div>
</div>

show follow:

<% provide(:title, @title) %>

<div class="row">
 <aside class="col-md-4">
 <section class="user_info">
 <% if @user.picture? %>
 <%= link_to (image_tag(@user.picture.url, class: "gravatar")), @user %>
 <h1> <%= link_to @user.name, @user %></h1>
 <% else %>
 <%= link_to (image_tag("default-icon.png", class: "gravatar")), @user %>
 <h1> <%= link_to @user.name, @user %></h1>
 <% end %>
 <%= link_to "view my profile", @user %>
 Tweets: <%= @user.microposts.count %>
 </section>
 <section class="stats">
 <%= render 'shared/stats' %>
 <% if @users.any? %>
 <div class="user_avatars">
 <% @users.each do |user| %>
 <% if user.picture? %>
 <%= link_to (image_tag(user.picture.url)), user_path(user) %>
 <% else %>
 <%= link_to (image_tag("default-icon.png")), user_path(user) %>
 <% end %>
 <% end %>
 </div>
 <% end %>
 </section>
 </aside>
 <div class="col-md-8">
 <h3><%= @title %></h3>
 <% if @users.any? %>

44

 <ul class="users follow">
 <%= render @users %>

 <%= will_paginate %>
 <% end %>
 </div>
</div>

